• ISSN 2097-1893
  • CN 10-1855/P

基于实测数据的航空瞬变电磁天电噪声去除方法研究

A study on sferic removal methods from actual airborne transient electromagnetic data

  • 摘要: 航空瞬变电磁(ATEM)中的天电噪声会对数据质量产生很大的影响,常导致数据质量的显著降低,因其随机性和能量幅值的不确定性,去噪难度较大. 本文探讨了三种天电噪声的去除方法:小波分解重构法、α-trimmed均值滤波法和Hampel滤波器,并比较了它们在处理信号时的优势和应用场景. 小波分解重构法的优势在于提供多尺度、多分辨率的信号分析,允许同时考虑信号的时间和频率特性,基函数的选择影响全局性和相位偏移,分解层数影响数据平滑程度,而阈值的设置则影响去噪的彻底性;α-trimmed均值滤波法通过移除窗口中的最大和最小值,使用剩余数据的平均值构建新数据体来实现去噪,具有自适应性;Hampel滤波器利用中位数和中值绝对偏差(MAD)定位异常值,能够针对性地去除噪声,尤其适合需要保留信号细节的场景. 本文对Hampel滤波器进行了改进,在降低计算量的同时保证了异常值检测的准确性. 本文通过模拟随机信号以及实测数据的测试,验证了三种方法的去噪能力,发现Hampel滤波器具有最佳的去除天电噪声的效果.

     

    Abstract: In airborne transient electromagnetic (ATEM) surveys, sferic significantly degrades data quality due to its randomness and uncertain energy amplitude. This study explores three methods for removing sferic: wavelet decomposition and reconstruction, α-trimmed mean filter, and Hampel filter. Their respective advantages and application scenarios in signal processing are compared. Wavelet decomposition and reconstruction offer multiscale and multiresolution signal analysis, allowing simultaneous consideration of time and frequency characteristics. The choice of basis functions affects global properties and phase shifts, while the number of decomposition levels influences data smoothing, and threshold settings impact noise removal effectiveness. α-trimmed mean filtering removes noise by averaging the remaining data after excluding the maximum and minimum values within a window, thus demonstrating adaptability. The Hampel filter detects outliers using median and median absolute deviation (MAD), effectively targeting noise removal, particularly suitable for scenarios requiring signal detail preservation. This study enhances the Hampel filter, reducing computational overhead while ensuring accurate outlier detection. Simulation experiments on random signals and field-collected ATEM data validate the denoising capabilities of the three methods, revealing that the Hampel filter achieves optimal sferic reduction.

     

/

返回文章
返回