• ISSN 2097-1893
  • CN 10-1855/P
熊超,王丰珏,黄宇阳,钱博浩,王思敏,让心怡,宋斯珊,周云良,尹凡. 2025. 利用低轨道卫星地磁观测反演电离层电流概述. 地球与行星物理论评(中英文),56(1):45-66. DOI: 10.19975/j.dqyxx.2024-013
引用本文: 熊超,王丰珏,黄宇阳,钱博浩,王思敏,让心怡,宋斯珊,周云良,尹凡. 2025. 利用低轨道卫星地磁观测反演电离层电流概述. 地球与行星物理论评(中英文),56(1):45-66. DOI: 10.19975/j.dqyxx.2024-013
Xiong C, Wang F J, Huang Y Y, Qian B H, Wang S M, Rang X Y, Song S S, Zhou Y L, Yin F. 2025. Overview of ionospheric currents inversion by using low Earth orbit satellite magnetic observations. Reviews of Geophysics and Planetary Physics, 56(1): 45-66 (in Chinese). DOI: 10.19975/j.dqyxx.2024-013
Citation: Xiong C, Wang F J, Huang Y Y, Qian B H, Wang S M, Rang X Y, Song S S, Zhou Y L, Yin F. 2025. Overview of ionospheric currents inversion by using low Earth orbit satellite magnetic observations. Reviews of Geophysics and Planetary Physics, 56(1): 45-66 (in Chinese). DOI: 10.19975/j.dqyxx.2024-013

利用低轨道卫星地磁观测反演电离层电流概述

Overview of ionospheric currents inversion by using low Earth orbit satellite magnetic observations

  • 摘要: 随着现代卫星技术的发展,携带高精度磁力计的低轨道卫星成为地磁场观测的重要手段,可以提供全球持续的磁场观测,而不受地面和低空天气条件的影响. 空间电流,特别是电离层电流,是引起地表和低轨道卫星高度处磁场扰动的主要来源. 本文简要介绍了低轨磁测卫星的发展历史和在轨定标流程与方法,回顾了电离层电流的起源、研究历史及产生机制,并详细介绍了利用卫星磁测数据反演电离层不同电流的方法. 基于地基和卫星磁测对同一电流的分析结果并不总是一致的,有时会出现明显的差异. 造成这些差异的原因可能与采用不同的数据源(比如地基与卫星、卫星与卫星之间)及反演算法中的假设有关. 基于有限的观测,在反演中通常要对电流的几何形状和所在位置进行一定的假设,而这些假设可能并不完全满足实际电流的分布. 因此,将地基台站和卫星磁测结合起来,通过对比和交叉验证,是检验和改进电离层电流反演算法中假设的合理性的一种有效手段. 利用融合后的磁场观测数据,建立更准确的电离层电流反演算法,全面分析电流的形态学和气候学特征,建立以地球磁场信号为媒介的空间天气监测理论与方法,将有助于提升人们对电离层发电机理论、磁层状态以及电离层与磁层之间能量耦合途径等科学问题的理解.

     

    Abstract: With the development of satellite technology, low-orbit satellites equipped with high-resolution magnetometers have become an important tool for measuring the Earth's magnetic field, which provides continuous observations around the world regardless of ground and low-altitude weather conditions. Currents in the space, particularly the ionospheric currents, are the main source to cause the magnetic field perturbations at ground and the low Earth orbit (LEO) satellite altitudes. In this paper, we briefly introduce the development history of LEO satellites for measuring the Earth's magnetic field, and the in-orbit calibration processes of magnetic data. In addition, the findings and generation mechanisms of ionospheric currents are reviewed, and the methods for reverting ionospheric currents by using the satellite magnetic measurements are introduced in detail. Currents derived from ground-based and satellite magnetic measurements are not always consistent, and sometimes there are significant differences. Reasons to cause such differences may be related to different data sources (e.g., ground-to-satellite, satellite-to-satellite) and the assumptions in inversion algorithms of currents. Based on limited observations, inversion is often based on assumptions about the geometry and location of the currents, that may not fully agree with the real current distributions. Therefore, combination of ground-based and satellite magnetic measurements, through cross-comparison and cross-verification, is an effective way to test and improve the rationality of the assumptions in the ionospheric current inversion algorithms. Establish the theory and method of space weather monitoring based on the combined and fused magnetic field measurements, will greatly improve our understanding of the ionospheric electrodynamics, the state of the magnetosphere, as well as the coupling mechanisms between ionosphere and magnetosphere.

     

/

返回文章
返回