Preliminary results of the ionospheric high-frequency Doppler shift monitor for the Chinese Meridian Project (Phase II)
-
摘要: 子午工程二期计划在漠河、北京、武汉、深圳四地分别建设由一个发射站和三个接收站构成的电离层高频多普勒监测台阵. 本文介绍了为此研制的电离层高频多普勒监测仪的进展和试观测期间取得的一些观测结果. 通过与电离层测高仪进行交叉对比,设备的性能和探测能力得到了验证. 目前该设备已部署7个站点进行试观测,本文报告了该设备探测到的太阳耀斑导致的电离层扰动、电离层行进式扰动、大尺度电场导致的多站同时扰动等多种现象. 未来子午工程二期建成后,该设备将具备我国上空北至漠河、南至广东的电离层扰动监测能力,并与其它探测手段融合发挥空间天气综合监测网络的最大效能.
-
关键词:
- 电离层高频多普勒频移 /
- 电离层扰动 /
- 子午工程
Abstract: The Chinese Meridian Project (Phase II) plans to construct ionospheric Doppler sounding arrays around Mohe, Beijing, Wuhan, and Shenzhen. Each array consists of one transmitter station and three stations equipped with the ionospheric high-frequency Doppler shift monitor, which is described in this paper in terms of system design and preliminary results from its pilot operation. By comparison with a collocated ionosonde, the performance capability of the sounder is validated. At present, the sounders have been installed at seven stations and have been running continuously for about 1 year. This paper presents observations of various ionospheric disturbances caused by solar flare eruptions, travelling ionosphere disturbances, and probable large-scale electric field variations. Once established, the chain of sounder arrays will continuously monitor ionospheric disturbances over eastern China and contribute to the sophisticated space environment monitoring network of the Chinese Meridian Project. -
图 2 (a)国家授时中心蒲城发射站与各高频多普勒接收站及电离层反射点的地理位置. 放大图显示了(b)北京和(c)武汉各站接收信号的电离层反射点的位置关系
Figure 2. (a) Locations of the National Time Service Center (NTSC) Pucheng transmitter, the receivers, and the reflection points. Enlarged maps showing the geometry of the reflection points for the receivers around (b) Beijing and (c) Wuhan
表 1 进行设备试观测的电离层高频多普勒监测站点经纬度
Table 1. Locations of the Doppler sounding stations
台站名 临时代码 地理经度/(°) 地理纬度/(°) 海淀北大站 BDT 116.31 39.99 昌平北大站 BCT 116.19 40.25 密云溪翁庄站 MDT 116.86 40.45 随州站 SUZ 113.32 31.57 崇阳站 CHY 114.13 29.51 武昌武大站 WHU 114.35 30.54 深圳南山站 SZT 113.97 22.60 -
[1] Aggson T L, Herrero F A, Johnson J A, et al. 1995. Satellite observations of zonal electric fields near sunrise in the equatorial ionosphere[J]. Journal of Atmospheric and Terrestrial Physics, 57(1): 19-24. doi: 10.1016/0021-9169(93)E0013-Y [2] Bhat A H, Ganaie B A, Ramkumar T K, et al. 2021a. Northward propagation of medium scale traveling ionospheric disturbances over Srinagar, J and K India[J]. Advances in Space Research, 68(9): 3806-3813. doi: 10.1016/j.asr.2021.06.035 [3] Bhat A H, Ganaie B A, Ramkumar T K, et al. 2021b. Rotation, bifurcation and merging of medium-scale traveling ionospheric disturbances over a low-mid latitude transition region[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 226: 105779. doi: 10.1016/j.jastp.2021.105779 [4] Chen J, Wang W, Lei J. 2021. Longitudinal variations of equatorial ionospheric electric fields near sunrise[J]. Journal of Geophysical Research: Space Physics, 126: e2020JA028977. [5] 陈彦龙, 张援农. 2015. 电离层多普勒接收机的设计与实验[J]. 空间科学学报, 35(5): 574-580Chen Y L, Zhang Y N. 1995. Design and testing of an ionospheric Doppler receiver[J]. Journal of Space Science, 35(5): 574-580 (in Chinese). [6] Chum J, Podolská K. 2018. 3D analysis of GW propagation in the ionosphere[J]. Geophysical Research Letters, 45: 11562-11571. doi: 10.1029/2018GL079695 [7] Chum J, Urbář J, Laštovička J, et al. 2018. Continuous Doppler sounding of the ionosphere during solar flares[J]. Earth Planets and Space, 70: 198. doi: 10.1186/s40623-018-0976-4 [8] Ding F, Wan W, Xu G, et al. 2011. Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China[J], Journal of Geophysical Research, 116: A09327. [9] Farges T, Le Pichon A, Blanc E, et al. 2003. Response of the lower atmosphere and the ionosphere to the. eclipse of August 11, 1999[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 65(6): 717-726. doi: 10.1016/S1364-6826(03)00078-6 [10] Hao Y Q, Xiao Z, Zhang D H. 2006. Response of the ionosphere to the Great Sumatra earthquake and volcanic eruption of Pinatubo[J]. Chinese Physics Letters, 23(7): 1955-1957. doi: 10.1088/0256-307X/23/7/082 [11] Hao Y Q, Xiao Z, Zhang D H. 2012. Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake[J], Journal of Geophysical Research, 117: A02305. [12] 胡晓彦, 郝永强, 代国峰, 等. 2021.2020年北京北大站电离层高频多普勒频移数据集[J/OL]. 中国科学数据(中英文网络版), 6(2): 112-118Hu X Y, Hao Y Q, Dai G F, et al. 2021.2020 ionospheric high frequency doppler shift dataset of Peking University Ionosphere Station[J/OL]. China Scientific Data, 6(2): 112-118 (in Chinese). [13] Kikuchi T, Chum J, Tomizawa I, et al. 2021. Penetration of the electric fields of the geomagnetic sudden commencement over the globe as observed with the HF Doppler sounders and magnetometers[J]. Earth, Planets and Space, 73(1): 1-13. [14] Kotake N, Otsuka Y, Ogawa T, et al. 2007. Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California[J]. Earth, Planets and Space, 59(2): 95-102. [15] Laštovička J, Chum J. 2017. A review of results of the international ionospheric Doppler sounder Network[J]. Advances in Space Research, 60(8): 1629-1643. doi: 10.1016/j.asr.2017.01.032 [16] Le H J, Liu L B, Chen Y D, et al. 2013. Statistical analysis of ionospheric responses to solar flares in the solar cycle 23[J]. Journal of Geophysical Research, 118(1): 576-582. doi: 10.1029/2012JA017934 [17] Le H J, Liu L B, Chen Y D, et al. 2019. Anomaly distribution of ionospheric total electron content responses to some solar flares[J]. Earth and Planetary Physics, 3(6): 481-488. [18] 李钧. 1983. 电离层声重波引起的高频多普勒频移[J]. 地球物理学报, 26(1): 1-8 doi: 10.3321/j.issn:0001-5733.1983.01.001Li J. 1983. Doppler frequency shifts of a HF radio wave caused by the ionospheric acoustic-gravity waves[J]. Chinese Journal of Geophysics, 26(1): 1-8 (in Chinese). doi: 10.3321/j.issn:0001-5733.1983.01.001 [19] 李利斌, 吴振华, 宁百齐, 等. 1987. 高频多普勒台阵中的若干技术问题[J]. 地球物理学报, 30(6): 560-565 doi: 10.3321/j.issn:0001-5733.1987.06.002Li L B, Wu Z H, Ning B Q, et al. 1987. Some technical aspects of a three-station array for observation of the ionospheric disturbances[J]. Chinese Journal of Geophysics, 30(6): 560-565 (in Chinese). doi: 10.3321/j.issn:0001-5733.1987.06.002 [20] Liu J, Chen C H, Sun Y Y, et al. 2016. The vertical propagation of disturbances triggered by seismic waves of the 11 March 2011 M9. 0 Tohoku earthquake over Taiwan[J]. Geophysical Research Letters, 43(4): 1759-1765. doi: 10.1002/2015GL067487 [21] Liu J, Zhang D H, Coster A J, et al. 2019. A case study of the large-scale traveling ionospheric disturbances in the eastern Asian sector during the 2015 St. Patrick's Day geomagnetic storm[J]. Annales Geophysicae, 37: 673-687. doi: 10.5194/angeo-37-673-2019 [22] Liu W, Blanc M, Wang C, et al. 2021. Scientific challenges and instrumentation for the International Meridian Circle Program[J]. Science China (Earth Sciences), 64(12): 2090-2097. doi: 10.1007/s11430-021-9841-8 [23] 刘选谋, 顾涛, 崔荣, 等. 1985. 相路径与群路径同斜向传输距离的关系[J]. 空间科学学报, 4(1): 69-74Liu X M, Gu T, Cui R, et al. 1985. Relations between transmission distance and phase/group path for oblique propagation[J]. Chinese Journal of Space Science, 4(1): 69-74 (in Chinese). [24] 龙咸灵, 侯杰昌. 1979. 关于电离层反射电波频率变化的问题[J]. 地球物理学报, 22(4): 387-395 doi: 10.3321/j.issn:0001-5733.1979.04.012Long X L, Hou J C. 1979. On the frequency variation of radio waves reflected from the ionosphere[J]. Chinese Journal of Geophysics, 22(4): 387-395 (in Chinese). doi: 10.3321/j.issn:0001-5733.1979.04.012 [25] 宁百齐, 李钧. 1996. 电离层不规则结构的多普勒谱特性[J]. 空间科学学报, 16(1): 36-42Ning B Q, Li J. 1996. Doppler spectrum of ionospheric irregularities[J]. Chinese Journal of Space Science, 16(1): 36-42 (in Chinese). [26] 宁百齐, 林晨. 2002. 软件无线电在电离层电波探测中的应用[J]. 电波科学学报, 17(3): 286-290 doi: 10.3969/j.issn.1005-0388.2002.03.017Ning B Q, Lin C. 2002. Application of software radio in ionospheric radio sounding[J]. Chinese Journal of Radio Science, 17(3): 286-290 (in Chinese). doi: 10.3969/j.issn.1005-0388.2002.03.017 [27] Ogawa T. 1958. Frequency variations in short-wave propagation[J]. Proceedings of the IRE, 46(12): 1934-1939. doi: 10.1109/JRPROC.1958.286813 [28] Oinats A V, Nishitani N, Ponomarenko P, et al. 2016. Statistical characteristics of medium-scale traveling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data[J]. Earth, Planets and Space, 68(1): 1-13. [29] Ouyang X, Liu W, Xiao Z, et al. 2016. Observations of ULF waves on the ground and ionospheric Doppler shifts during storm sudden commencement[J]. Journal of Geophysical Research: Space Physics, 121(4): 2976-2983. doi: 10.1002/2015JA022092 [30] Pilipenko V A, Fedorov E N, Teramoto M, et al. 2013. The mechanism of mid-latitude Pi2 waves in the upper ionosphere as revealed by combined Doppler and magnetometer observations[J]. Annales Geophysicae, 31: 689-695. doi: 10.5194/angeo-31-689-2013 [31] Sun L, Xu J, Wang W, et al. 2016. A statistical analysis of equatorial plasma bubble structures based on an all-sky airglow imager network in China[J]. Journal of Geophysical Research: Space Physics, 121: 11495-11517. doi: 10.1002/2016JA022950 [32] Sun L, Xu J, Xiong C, et al. 2019. Midlatitudinal special airglow structures generated by the interaction between propagating medium-scale traveling ionospheric disturbance and nighttime plasma density enhancement at magnetically quiet time[J]. Geophysical Research Letters, 46(3): 1158-1167. doi: 10.1029/2018GL080926 [33] 万卫星, 袁洪, 宁百齐, 等. 1995. 我国中部地区电离层扰动时空尺度的统计分析[J]. 空间科学学报, 15(4): 301-306Wan W, Yuan H, Ning B Q, et al. 1995. A statistical study for the spacial-temporal scale of ionospheric disturbances in middle China[J]. Chinese Journal of Space Science, 15(4): 301-306 (in Chinese). [34] 万卫星, 袁洪, 梁君. 1996. 非单一电离层扰动场的台阵探测分析[J]. 地球物理学报, 39(1): 17-25 doi: 10.3321/j.issn:0001-5733.1996.01.003Wan W, Yuan H, Liang J. 1996. An analysis method of nonuniform ionospheric disturbances from array observation[J]. Chinese Journal of Geophysics, 39(1): 17-25 (in Chinese). doi: 10.3321/j.issn:0001-5733.1996.01.003 [35] Wan W, Yuan H, Ning B Q, et al. 1998. Traveling ionospheric disturbances associated with the tropospheric vortexes around Qinghai-Tibet Plateau[J]. Geophysical Research Letters, 25(20): 3775-3778. doi: 10.1029/1998GL900030 [36] Wang C. 2010. New chains of space weather monitoring stations in China[J]. Space Weather, 8(8): 1-5. [37] Wang C, Chen Z Q, Xu J Y. 2020. Introduction to Chinese Meridian Project-Phase Ⅱ[J]. Chinese Journal of Space Science, 40(5): 718-722. doi: 10.11728/cjss2020.05.718 [38] Wang J, Chen G, Yu T, et al. 2021. Middle-scale ionospheric disturbances observed by the oblique-incidence ionosonde detection network in North China after the 2011 Tohoku tsunamigenic earthquake[J]. Sensors, 21(3): 1000. doi: 10.3390/s21031000 [39] Watts J M, Davies K. 1960. Rapid frequency analysis of fading radio signals[J]. Journal of Geophysical Research, 65(8): 2295-2301. doi: 10.1029/JZ065i008p02295 [40] 肖赛冠, 郝永强, 张东和, 等. 2006a. 电离层对台风响应的全过程的特例研究[J]. 地球物理学报, 49(3): 623-628Xiao S G, Hao Y Q, Zhang D H, et al. 2006a. A case study on whole response processes of the ionosphere to typhoons[J]. Chinese Journal of Geophysics, 49(3): 623-628 (in Chinese). [41] 肖赛冠, 张东和, 肖佐. 2006b. 台风激发的声重力波的可探测性研究[J]. 空间科学学报, 27(1): 35-40Xiao S G, Zhang D H, Xiao Z. 2006b. Study on the detectability of Typhoon-generated acoustic-gravity waves[J]. Chinese Journal of Space Science, 27(1): 35-40 (in Chinese). [42] Xiao S G, Xiao Z, Shi J K, et al. 2009. Observational facts in revealing a close relation between acoustic-gravity waves and midlatitude spread F[J]. Journal of Geophysical Research, 114: A01303. [43] Xiao S G, Shi J K, Zhang D H, et al. 2012. Observational study of daytime ionospheric irregularities associated with typhoon[J]. Science China Technological Sciences, 55(5): 1302-1304. doi: 10.1007/s11431-012-4816-7 [44] 肖赛冠, 肖佐, 史建魁, 等. 2012. 电离层高频多普勒记录在扩展-F研究中的应用[J]. 地球物理学报, 55(7): 2162-2166Xao S G, Xiao Z, Shi J K, et al. 2012. Application of the HF Doppler observations in studying spread-F[J]. Chinese Journal of Geophysics, 55(7): 2162-2166 (in Chinese). [45] 肖佐, 霍宏暹, 邹积清, 等. 1987. DQ-87型地球物理数据采集和处理系统[J]. 地球物理学报, 30(6): 653-658 doi: 10.3321/j.issn:0001-5733.1987.06.011Xiao Z, Ho H, Zou J, et al. 1987. DQ-87 data processing system for geophysical observations[J]. Chinese Journal of Geophysics, 30(6): 653-658 (in Chinese). doi: 10.3321/j.issn:0001-5733.1987.06.011 [46] 肖佐, 刘凯军, 张东和. 2002. 典型电离层多普勒记录及其讨论[J]. 空间科学学报, 22(4): 321-329 doi: 10.3969/j.issn.0254-6124.2002.04.005Xiao Z, Liu K J, Zhang D H. 2002. Some typical records of ionospheric doppler shift and their significance in the study of ionospheric morphology[J]. Chinese Journal of Space Science, 22(4): 321-329 (in Chinese). doi: 10.3969/j.issn.0254-6124.2002.04.005 [47] Xiao Z, Xiao S G, Hao Y Q, et al. 2007. Morphological features of ionospheric response to typhoon[J]. Journal of Geophysical Research, 112: A04304. [48] Xu J, Li Q, Yue J, et al. 2015. Concentric gravity waves over northern China observed by an airglow imager network and satellites[J]. Journal of Geophysical Research: Atmospheres, 120: 11058-11078. doi: 10.1002/2015JD023786 [49] Xu J, Li Q, Sun L, et al. 2021. The ground-based airglow imager network in China: Recent observational results[C]//Wang W B, Zhang Y L, Paxton L J. Upper Atmosphere Dynamics and Energetics, American Geophysical Union, 365-394. [50] Yadav V, Rathi R, Gaur G, et al. 2021. Interaction between nighttime MSTID and mid-latitude field-aligned plasma depletion structure over the transition region of geomagnetic low-mid latitude: First results from Hanle, India[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 217: 105589. doi: 10.1016/j.jastp.2021.105589 [51] Zalizovski A V, Yampolski Y M, Mishin E, et al. 2021. Multi-position facility for HF Doppler sounding of ionospheric inhomogeneities in Ukraine[J]. Radio Science, 56(10): 1-11. [52] 张东和, 萧佐, 高玉芬, 等. 1999. 应用高频多普勒方法对耀斑期间电离层TEC变化的估算[J]. 空间科学学报, 19(4): 315-320Zhang D H, Xiao Z, Gao Y F, et al. 1999. The calculation of lower ionospheric TEC enhancement during initial flare burst using HF doppler records[J]. Chinese Journal of Space Science, 19(4): 315-320 (in Chinese). [53] Zhang D H, Xiao Z, Chang Q. 2002. The correlation of flare's location on solar disc and the sudden increase of total electron content[J]. Chinese Science Bulletin, 47(1): 83-85. [54] Zhang D H, and Xiao Z. 2005. Study of ionospheric response to the 4B flare on 28 October 2003 using international GPS service network data[J]. Journal of Geophysical Research, 110(A3): A03307. [55] Zhang D H, Mo X H, Cai L, et al. 2011. Impact factor for the ionospheric total electron content response to solar flare irradiation[J]. Journal of Geophysical Research, 116(A4): A04311. [56] Zhang R L, Liu L B, Le H J, et al. 2017. Equatorial ionospheric electrodynamics during solar flares[J]. Geophysical Research Letters, 44(10): 4558-4565. doi: 10.1002/2017GL073238 [57] Zhao B Q, Hao Y Q. 2015. Ionospheric and geomagnetic disturbances caused by the 2008 Wenchuan earthquake: A revisit[J]. Journal of Geophysical Research: Space Physics, 120(7): 5758-5777. doi: 10.1002/2015JA021035 [58] 赵九章. 2014. 高空大气物理学[M]. 北京: 北京大学出版社.Zhao J Z. 2014. Physics of the Upper Atmosphere[M]. Beijing: Peking University Press (in Chinese). -