Direct surface wave tomography for three dimensional structure based on surface wave traveltimes: Methodology review and applications
-
摘要: 利用面波频散数据进行各向同性和各向异性横波速度结构成像是研究全球和区域构造变形、获取地壳上地幔和近地表精细结构的一种非常有效的方法. 传统的基于频散数据的面波成像通常采用两步法,即首先反演二维相速度或群速度分布图,然后再基于格点的纯路径频散反演格点下方的一维横波速度模型,之后再拼合成三维速度模型. 在本文中我们较为详细地综述新发展的基于面波频散走时的三维面波直接成像方法体系,即面波一步法成像. 该方法体系包括通过所有路径、不同频率的面波频散走时直接反演三维各向同性横波速度结构的方法(DSurfTomo)、直接反演三维方位各向异性横波速度结构的方法(DAzimSurfTomo),以及直接反演三维径向各向异性横波速度结构的方法(DRadiSurfTomo). 新的面波直接成像方法计算不同周期的面波射线路径,从而更好地考虑复杂结构下面波射线路径弯曲对成像精度的影响. 随后我们介绍面波直接成像方法的应用实例,包括地壳上地幔及地壳浅部的多尺度各向同性和各向异性横波速度结构的成像,这些成像研究为认识区域构造演化、孕震构造、断裂带浅部结构、成矿构造、城市地下结构等提供了重要的约束. 最后我们讨论面波直接成像方法的频散数据及模型参数化问题,以及基于有限频理论的面波直接成像和面波全波形成像,讨论并展望在面波直接成像方法框架下面波频散数据与其他地震或地球物理数据的联合成像问题.Abstract: Surface wave tomography using dispersion data to obtain isotropic and anisotropic shear wave velocity structures is a very efficient approach to study regional and global tectonics and deformation and to probe high-resolution crustal, upper mantle and near surface structures. Conventional surface wave tomography based on dispersion data usually has two steps, that is, inverting for 2D phase/group velocity maps first and then conducting point-wise inversion to obtain a 1D shear wave velocity model at each geographical grid point, which are then combined to obtain a 3D shear wave velocity model. In this paper, we review in detail the direct surface wave tomography framework based on surface wave dispersion traveltimes, that is, the one-step surface wave tomography. This framework includes direct inversion of 3D isotropic shear wave velocity model using all dispersion measurements at different periods and from all paths (DSurfTomo), direct inversion of both isotropic and azimuthally anisotropic shear wave velocity model (DAzimSurfTomo), and direct inversion of radially anisotropic shear wave velocity model (DRadiSurfTomo).The new direct tomography method computes surface wave ray paths at different periods, thus better considering the ray path bending effect of surface waves in complex media on the precision of tomographic images. We then introduce some applications of the new direct tomography methods, including multi-scale isotropic and anisotropic shear wave velocity tomography in the crust and upper mantle as well as shallow crust. These tomographic studies provide important constraints on regional tectonic evolution, seismogenic structures, shallow fault zone structures, ore deposit structures, and urban subsurface structures. At last, we discuss the dispersion data and model parameterization problems in surface wave tomography, direct surface wave tomography based on finite frequency theory and full waveform inversion, and perspective research of joint tomography problems using surface wave dispersion data and other seismological or geophysical data in the framework of direct surface wave tomography.
-
图 1 面波成像中离散化的三维网格点模型及面波射线路径示意图. (a)水平向的二维慢度网格点;(b)垂直向的VS网格点(黑点)和插值得到的层状模型(黑色阶梯状实线). 图(a)中的黑色实线表示某个周期面波在AB间的传播路径,路径上的p点的慢度由周围4个水平网格点(1、2、3、4)的双线性值插值获得. 图(b)中垂直格点模型通过扰动(如红色圆点和虚线所示)来计算频散相对于参数模型的深度敏感核(修改自Fang et al., 2015)
Figure 1. Discretized 3D grid model of surface wave tomography and illustration of surface wave ray path. (a) 2D slowness grids in the horizontal direction; (b) VS grids (black dots) in the vertical direction and the interpolated layered model (black staircase lines). In (a) the black solid line represents the propagation path between two stations A and B for the surface wave at some period. The phase slowness at any point p along the path is determined from the values at four surrounding horizontal grid points (1, 2, 3, 4) using a bilinear interpolation method. In (b) the vertical grid model is perturbed (as shown by the red dots and red dashed lines) to compute the depth sensitivity kernel of dispersion data to model parameters (modified from Fang et al., 2015)
图 2 一维速度模型(a)及其相应的
$ \mathrm{d}c/\mathrm{d}L $ (实线)和$ \mathrm{d}c/\mathrm{d}A $ (虚线)在不同周期的深度敏感核(b)(修改自Liu et al., 2019)Figure 2. Depth sensitivity kernels (b) of
$ \mathrm{d}c/\mathrm{d}L $ (solid line) and$ \mathrm{d}c/\mathrm{d}A $ (dashed line) at different periods from a 1D velocity model (a) (modified from Liu et al., 2019)图 4 不同周期瑞利波和勒夫波相速度深度敏感核的对比. (a)计算深度敏感核所采用的横波速度模型;(b)5 s、20 s、40 s 周期的瑞利面波相速度的深度敏感核;(c)5 s、20 s、40 s 周期的勒夫面波相速度的深度敏感核
Figure 4. The comparison of depth sensitivity kernels of Rayleigh wave and Love wave at different periods. (a) The shear wave velocity model used to compute depth sensitivity kernels; (b) Depth sensitivity kernels of Rayleigh wave phase velocities at periods of 5 s, 20 s, and 40 s; (c) Depth sensitivity kernels of Love wave phase velocities at periods of 5 s, 20 s, and 40 s
图 5 考虑面波射线路径弯曲(a)和大圆路径假设下(b)的300 m深度处的横波速度反演结果. (a, b)图中三角形表示本研究中使用的地震台站位置,灰线表示合肥市区内的主要道路. 黑色实线表示蜀山断层(SSF)位置. 红色直线PP'表示横跨断层的一条剖面的位置,其速度剖面如(c)所示. (c)中黑色三角形指示根据速度差异推测的蜀山断层(SSF)的位置(修改自 Li et al., 2016)
Figure 5. Shear wave velocity inversion results at the depth of 300 m considering the surface wave ray path bending effect (a) and with the great-circle propagation hypothesis (b). In (a, b) the triangles show the stations used in the study, gray lines show the main roads in the Hefei city, the black line shows the location of the Shushan Fault (SSF), and the red line PP' represents the profile location across the fault, with its velocity profile shown as (c). In (c) the black triangle indicates the location of the Shushan fault (SSF) (modified from Li et al., 2016)
图 6 云南地区三维方位各向异性横波速度结构模型. (a-c)图中的红色短棒显示方位异性的大小和快波方向;图(c)中的蓝色短线显示远震横波分裂测量结果(常利军等,2015),黑色箭头指示板块绝对运动方向(Argus et al., 2011)(修改自Liu et al., 2019)
Figure 6. 3D azimuthally anisotropic shear wave velocity model in the Yunnan area. In (a-c) the red bars give the amplitude and fast direction of azimuthal anisotropy. The blue bars show the teleseismic shear wave splitting measurements (Chang et al., 2015) and the black arrow indicates the absolute plate motion (Argus et al., 2011) (modified from Liu et al., 2019)
图 7 郯庐断裂带巢湖段主要地质单元、地震台站分布和成像结果. (a)研究区域主要地质单元和地震台站分布. 其中黑色三角形为地震台站位置,五角星表示主要的城市位置,深灰色实线为主要断裂位置,包括六安断裂(LAF)、巢湖断裂(CLF)、照明山断裂(ZMSF)、滁河断裂(CHF)、嘉山—庐江断裂(JSLJF)、池河—太湖断裂(CHTHF)、盛桥—柏山断裂(SQBSF). 由西至东,主要地质单元包括合肥盆地、张八岭隆起、郯庐断裂带、巢湖、银屏山(YPM). (b-d)深度分别为1 km、4.5 km和8 km深度的各向同性和方位各向异性横波速度分布. 其中小短线的长度和方位分别指示方位各向异性的强度和方位角,灰色小短线表示该方位各向异性具有较大误差(修改自Luo and Yao, 2021)
Figure 7. Distribution of main geological units, seismic stations, and tomographic results in the Chao Lake segment of the Tanlu fault zone. (a) Distribution of major geological units and seismic stations within the study area. The black triangle represents the location of the seismic station. The pentagram represents the location of the main city. The dark gray solid lines indicate the main fault locations, including the LuAn fault (LAF), the Chao Lake fault (CLF), the Zhaomingshan fault (ZMSF), the Chuhe fault (CHF), the Jiashan-Lujiang fault (JSLJF), the Chihe-Taihu fault (CHTHF), and the Shenqiao-Baishan fault (SQBSF). From west to east, the main geological units are the Hefei basin, the Zhangbaling uplift, the Tanlu fault zone, the Chao lake, and the Yinping mountain (YPM). (b-d) Slices of isotropic and azimuthally anisotropic shear wave velocity at depths of 1 km, 4.5 km, and 8 km, respectively. The length and azimuth of the short line indicate the strength and azimuth of the anisotropy, respectively. The gray short line indicates that the anisotropy has a large error (modified from Luo and Yao, 2021)
图 8 喜马拉雅东构造结5 km、25 km和35 km深度的平均横波速度结构Vs(a, c, e)及其相对应深度的径向各向异性结构
$ \xi $ (b, d, f). 白线和灰线代表划分的不同子区域间的边界. (a)中灰色三角为南迦巴瓦峰的位置,粉色三角为台站位置;(c)和(e)中的紫线代表25 km和35 km深度地壳中带状软弱物质的位置. (a)和(b)中英文缩写为:BNS:班公—怒江缝合带;ITS:印度—雅鲁藏布江缝合带;JLF:嘉犁断裂;BB-LLF:边坝—洛龙断裂;CR:Comei 裂谷;MLF:米林断裂;MTF:墨脱断裂;NB:南迦巴瓦(修改自 Hu et al., 2020)Figure 8. Average shear wave velocity VS (a, c, e) and corresponding radial anisotropy ξ (b, d, f) around the eastern Himalayan syntaxis shown at depths of 5 km, 25 km, and 35 km, respectively. White and gray dashed lines denote the boundaries for different subregions. Pink triangles in (a) denote the stations used in this study. The gray triangle in (a) denotes the location of Namche Barwa peak. Purple lines in (c) and (e) denote the proposed channelized weak zones at depths of 25 km and 35 km, respectively. Abbreviations in (a) and (b) are as follows: BNS, Bangong-Nujiang Suture; ITS, Indus-Tsangpo Suture; JLF, Jiali Fault; BB-LLF,Bianba-Luolong Fault; CR, Comei Rift; MLF, Mainling Fault; MTF, Motuo Fault; NB, Namche Barwa (modified from Hu et al., 2020)
图 9 台北盆地两个台站间0.8 s周期瑞利面波走时的三维敏感核函数. (a)显示了0.4 km深度处的三维敏感核的水平剖面,黑色实线表示射线路径. (b)显示了三维敏感核的一条纵剖面,位置如(a)中红色实线所示(修改自李成,2019)
Figure 9. The 3D sensitivity kernel of the 0.8 s period Rayleigh wave travel-time between two stations in the Taipei Basin. (a) Shows the horizontal cross-section of the 3D sensitivity kernel at 0.4 km depth with the black curve representing the ray path. (b) Shows the vertical cross-section of the 3D sensitivity kernel with its location given as the red line in (a) (modified from Li, 2019)
-
[1] Argus D F, Gordon R G, DeMets C. 2011. Geologically current motion of 56 plates relative to the no-net-rotation reference frame[J]. Geochemistry, Geophysics, Geosystems, 12(11): Q11001. [2] Aster R C, Borchers B, Thurber C H. 2013. Parameter Estimation and Inverse Problems (2nd Edition)[M]. Waltham, USA: Elsevier, 55-91. [3] Barmin M P, Ritzwoller M H, Levshin A L. 2001. A fast and reliable method for surface wave tomography[J]. Pure and Applied Geophysics, 158(8): 1351–1375. doi: 10.1007/PL00001225 [4] Barruol G, Kern H. 1996. Seismic anisotropy and shear-wave splitting in lower-crustal and upper-mantle rocks from the Ivrea Zone—experimental and calculated data[J]. Physics of the Earth and Planetary Interiors, 95(3-4): 175–194. doi: 10.1016/0031-9201(95)03124-3 [5] Bem T S, Yao H J, Luo S, et al. 2020. High-resolution 3-D crustal shear-wave velocity model reveals structural and seismicity segmentation of the central-southern Tanlu Fault zone, eastern China[J]. Tectonophysics, 778: 228372. doi: 10.1016/j.tecto.2020.228372 [6] Bem T S, Liu C M, Yao H J, et al. 2022. Azimuthally anisotropic structure in the crust and uppermost mantle in central East China and its significance to regional deformation around the Tan-Lu Fault Zone[J]. Journal of Geophysical Research: Solid Earth, 127(3): e2021JB023532. [7] Bensen G D, Ritzwoller M H, Shapiro N H. 2008. Broadband ambient noise surface wave tomography across the United States[J]. Journal of Geophysical Research: Solid Earth, 113(B5): B05306. [8] Lapo B, Göran Ekström. 2002. New images of the Earth’s upper mantle from measurements of surface wave phase velocity anomalies[J]. Journal of Geophysical Research: Solid Earth, 107(B4): ESE 1-1-ESE 1-14. [9] Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust[J]. Bulletin of the Seismological Society of America, 95(6): 2081–2092. doi: 10.1785/0120050077 [10] Brune J, Dorman J. 1963. Seismic waves and earth structure in the Canadian shield[J]. Bulletin of the Seismological Society of America, 53(1): 167–209. [11] 常利军, 丁志峰, 王椿镛. 2015. 南北构造带南段上地幔各向异性特征[J]. 地球物理学报, 58(11): 4052-4067Chang L J, Ding Z F, Wang C Y. 2015. Upper mantle anisotropy beneath the southern segment of North-South tectonic belt[J]. Chinese Journal of Geophysics, 58(11): 4052-4067 (in Chinese). [12] Chen K X, Chen P F, Chen L W, et al. 2016a. South Ilan Plain high-resolution 3-D S -wave velocity from ambient noise tomography[J]. Terrestrial, Atmospheric and Oceanic Sciences, 27(3): 375. [13] Chen K X, Hao K C, Brown D, et al. 2016b. Three-dimensional ambient noise tomography across the Taiwan Strait: The structure of a magma-poor rifted margin[J]. Tectonics, 35(8): 1782–1792. doi: 10.1002/2015TC004097 [14] Chen M, Huang H, Yao H J, et al. 2014. Low wave speed zones in the crust beneath SE Tibet revealed by ambient noise adjoint tomography[J]. Geophysical Research Letters, 41(2): 334–340. doi: 10.1002/2013GL058476 [15] Dahlen F A, Tromp J. 1999. Theoretical Global Seismology[M]. Princeton: Princeton University Press. [16] Du N Q, Li Z W, Hao T Y, et al. 2021. Joint tomographic inversion of crustal structure beneath the eastern Tibetan Plateau with ambient noise and gravity data[J]. Geophysical Journal International, 227(3): 1961–1979. doi: 10.1093/gji/ggab299 [17] Du P X, Wu J, Li Y, et al. 2020. Imaging Karatungk Cu-Ni mine in Xinjiang, western China with a passive seismic array[J]. Minerals, 10(7): 601. doi: 10.3390/min10070601 [18] Dziewonski A, Bloch S, Landisman M. 1969. A technique for the analysis of transient seismic signals[J]. Bulletin of the Seismological Society of America, 59(1): 427–444. doi: 10.1785/BSSA0590010427 [19] Fang H J, Yao H J, Zhang H, et al. 2015. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: Methodology and application[J]. Geophysical Journal International, 201(3): 1251–1263. doi: 10.1093/gji/ggv080 [20] Fang H J, Zhang H J, Yao H J, et al. 2016. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the southern California plate boundary region[J]. Journal of Geophysical Research: Solid Earth, 121(5): 3557–3569. doi: 10.1002/2015JB012702 [21] Fang H J, Yao H J, Zhang H J, et al. 2019. VP/VS tomography in the southern California plate boundary region using body and surface wave traveltime data[J]. Geophysical Journal International, 216(1): 609–620. doi: 10.1093/gji/ggy458 [22] Feng M, An M J. 2010. Lithospheric structure of the Chinese Mainland determined from joint inversion of regional and teleseismic Rayleigh-wave group velocities[J]. Journal of Geophysical Research: Solid Earth, 115(B6): B06317. [23] Gao H Y, Shen Y. 2014. Upper mantle structure of the Cascades from full-wave ambient noise tomography: Evidence for 3D mantle upwelling in the back-arc[J]. Earth and Planetary Science Letters, 390: 222–233. doi: 10.1016/j.jpgl.2014.01.012 [24] Golos E M, Fang H J, Yao H J, et al. 2018. Shear wave tomography beneath the United States using a joint inversion of surface and body waves[J]. Journal of Geophysical Research: Solid Earth, 123(6): 5169–5189. doi: 10.1029/2017JB014894 [25] Groos L, Schäfer M, Forbriger T, et al. 2017. Application of a complete workflow for 2D elastic full-waveform inversion to recorded shallow-seismic Rayleigh waves[J]. Geophysics, 82(2): R109–117. doi: 10.1190/geo2016-0284.1 [26] Gu N, Wang K D, Gao J, et al. 2019. Shallow crustal structure of the Tanlu Fault Zone near Chao Lake in eastern China by direct surface wave tomography from local dense array ambient noise analysis[J]. Pure and Applied Geophysics, 176(3): 1193–1206. doi: 10.1007/s00024-018-2041-4 [27] Haskell N A. 1953. The dispersion of surface waves on multilayered media[J]. Bulletin of the Seismological Society of America, 43(1): 17–34. doi: 10.1785/BSSA0430010017 [28] Herrmann R B. 2013. Computer programs in seismology: An evolving tool for instruction and research[J]. Seismological Research Letters, 84(6): 1081–1088. doi: 10.1785/0220110096 [29] Hu S Q, Yao H J, Huang H. 2020. Direct surface wave radial anisotropy tomography in the crust of the eastern Himalayan syntaxis[J]. Journal of Geophysical Research: Solid Earth, 125(5): e2019JB018257. [30] 胡亚洲. 2021. 线性台阵背景噪声频散分析方法研究和胶东地区地壳浅部结构成像[D]. 合肥: 中国科学技术大学.Hu Y Z. 2021. Study on ambient noise dispersion analysis methods of linear array and shallow crustal tomography in Jiaodong Peninsula[D]. Hefei: University of Science and Technology of China (in Chinese). [31] Huang H, Yao H J, van der Hilst R D. 2010. Radial anisotropy in the crust of SE Tibet and SW China from ambient noise interferometry[J]. Geophysical Research Letters, 37(21): L21310. [32] Huang S Y, Yao H J, Lu Z W, et al. 2020. High-resolution 3-D shear-wave velocity model of the Tibetan Plateau: Implications for crustal deformation and porphyry Cu deposit formation[J]. Journal of Geophysical Research: Solid Earth, 125(7): e2019JB019215. [33] 靳佳琪, 罗松, 姚华建, 等. 2022. 密集台阵背景噪声成像揭示郯庐断裂带潍坊段地壳浅层速度结构及变形特征[J]. 地球物理学报(录用), DOI: 10.6038/cjg2022P0934.Jin J Q, Luo S, Yao H J, et al. 2022. Dense array ambient noise tomography reveals the shallow crustal velocity structure and deformation features in the Weifang segment of the Tanlu fault zone[J]. Chinese Journal of Geophysics, DOI: 10.6038/cjg2022P0934 (in Chinese). [34] Knopoff L, Mueller S, Pilant W L. 1966. Structure of the crust and upper mantle in the ALPS from the phase velocity of Rayleigh waves[J]. Bulletin of the Seismological Society of America, 56(5): 1009–1044. doi: 10.1785/BSSA0560051009 [35] Kuo-Chen H, Chen K X, Sun W F, et al. 2017. 3D VS ambient noise tomography of the 2016 MW 6.4 Meinong Earthquake source region in Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 28(5): 693-701. [36] Landisman, M, Dziewonski A, Satô Y. 1969. Recent improvements in the analysis of surface wave observations[J]. Geophysical Journal of the Royal Astronomical Society, 17(4): 369–403. doi: 10.1111/j.1365-246X.1969.tb00246.x [37] Levshin A L, Ritzwoller M H. 2001. Automated detection, extraction, and measurement of regional surface waves[J]. Pure and Applied Geophysics, 158(8): 1531–1545. doi: 10.1007/PL00001233 [38] Li C, Yao H J, Fang H J, et al. 2016. 3D near-surface shear-wave velocity structure from ambient-noise tomography and borehole data in the Hefei urban area, China[J]. Seismological Research Letters, 87(4): 882–892. doi: 10.1785/0220150257 [39] 李成. 2019. 基于背景噪声面波的浅层地壳结构成像: 方法研究及其应用[D]. 合肥: 中国科学技术大学.Li C. 2019. Imaging shallow crust structure from ambient noise surface wave: Methodology and applications[D]. Hefei: University of Science and Technology of China (in Chinese). [40] Li C, Yao H J, Yang Y, et al. 2020. 3-D shear wave velocity structure in the shallow crust of the Tanlu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications[J]. Earth and Planetary Physics, 4(2): 317–328. [41] Li C L, Feng J K, Fan J K, et al. 2022. Seismic anisotropy evidence for modified lithosphere below the Bohai Sea region, eastern North China Craton[J]. Tectonophysics, 823: 229192. doi: 10.1016/j.tecto.2021.229192 [42] 李玲利, 黄显良, 姚华建, 等. 2020. 合肥市地壳浅部三维速度结构及城市沉积环境初探[J]. 地球物理学报, 63(9): 3307-3323 doi: 10.6038/cjg2020O0097Li L L, Huang X L, Yao H J, et al. 2020. Shallow shear wave velocity structure from ambient noise tomography in Hefei city and its implication for urban sedimentary environment[J]. Chinese Journal of Geophysics, 63(9): 3307-3323(in Chinese). doi: 10.6038/cjg2020O0097 [43] 李想, 姚华建, 李昱, 等. 2015. 偏离大圆路径传播对四川西部面波相速度成像的影响[J]. 地震学报, 37(1): 15-28 doi: 10.11939/j.issn:0253-3782.2015.01.002Li X, Yao H J, Li Y, et al. 2015. Effect of off-great-circle propagation on surface wave phase velocity tomography in western Sichuan[J]. Acta Seismologica Sinica, 37(1): 15–28(in Chinese). doi: 10.11939/j.issn:0253-3782.2015.01.002 [44] Li X T, Huang J L, Liu Z K. 2020. Ambient-noise tomography of the Baiyun gold deposit in Liaoning, China[J]. Seismological Research Letters, 91(5): 2791–2802. doi: 10.1785/0220190393 [45] Liang C T, Langston C A. 2009. Wave gradiometry for USArray: Rayleigh waves[J]. Journal of Geophysical Research, 114(B2): B02308. [46] Lin F C, Ritzwoller M H, Snieder R. 2009. Eikonal tomography: Surface wave tomography by phase front tracking across a regional broad-band seismic array[J]. Geophysical Journal International, 177(3): 1091–1110. doi: 10.1111/j.1365-246X.2009.04105.x [47] Lin F C, Ritzwoller M H. 2010. Empirically determined finite frequency sensitivity kernels for surface waves[J]. Geophysical Journal International, 182(2), 923–932. doi: 10.1111/j.1365-246X.2010.04643.x [48] Lin F C, Ritzwoller M H. 2011. Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure[J]. Geophysical Journal International, 186(3): 1104–1120. doi: 10.1111/j.1365-246X.2011.05070.x [49] Lin F C, Ritzwoller M H, Yang Y J, et al. 2011. Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States[J]. Nature Geoscience, 4(1): 55–61. doi: 10.1038/ngeo1036 [50] Liu C M, Yao H J, Yang H Y, et al. 2019. Direct inversion for three-dimensional shear wave speed azimuthal anisotropy based on surface wave ray tracing: Methodology and application to Yunnan, southwest China[J]. Journal of Geophysical Research: Solid Earth, 124(11): 11394–11413. doi: 10.1029/2018JB016920 [51] Liu Y, Zhang H J, Fang H J, et al. 2018. Ambient noise tomography of three-dimensional near-surface shear-wave velocity structure around the hydraulic fracturing site using surface microseismic monitoring array[J]. Journal of Applied Geophysics, 159: 209–217. doi: 10.1016/j.jappgeo.2018.08.009 [52] Liu Y, Yao H J, Zhang H J, et al. 2021. The community velocity model v. 1.0 of southwest China, constructed from joint body- and surface-wave travel-time tomography[J]. Seismological Research Letters, 92(5): 2972–2987. doi: 10.1785/0220200318 [53] Luo S, Yao H J, Li Q S, et al. 2019. High-resolution 3D crustal S-wave velocity structure of the middle-lower Yangtze River Metallogenic Belt and implications for its deep geodynamic setting[J]. Science China Earth Sciences, 62(9): 1361–1378. doi: 10.1007/s11430-018-9352-9 [54] Luo S, Yao H J. 2021. Multistage tectonic evolution of the Tanlu fault: Insights from upper crustal azimuthal anisotropy of the Chao Lake segment[J]. Tectonophysics, 806: 228795. doi: 10.1016/j.tecto.2021.228795 [55] Luo S, Yao H J, Wang J N, et al. 2021. Direct inversion of surface wave dispersion data with multiple-grid parametrizations and its application to a dense array in Chao Lake, eastern China[J]. Geophysical Journal International, 225(2): 1432–1452. doi: 10.1093/gji/ggab036 [56] Luo S, Yao H J, Zhang Z Q, et al. 2022. High-resolution crustal and upper mantle shear-wave structure beneath the central-southern Tanlu fault: Implications for its initiation and evolution[J]. Earth and Planetary Science Letters, 595: 117763. doi: 10.1016/j.jpgl.2022.117763 [57] Luo Y H, Xu Y X, Yang Y J. 2013. Crustal radial anisotropy beneath the Dabie Orogenic Belt from ambient noise tomography[J]. Geophysical Journal International, 195(2): 1149–1164. doi: 10.1093/gji/ggt281 [58] Montagner J P, Nataf H C. 1986. A simple method for inverting the azimuthal anisotropy of surface waves[J]. Journal of Geophysical Research: Solid Earth, 91(B1): 511–520. doi: 10.1029/JB091iB01p00511 [59] Montagner J, Nataf H. 1988. Vectorial tomography—I. Theory[J]. Geophysical Journal, 94(2): 295–307. doi: 10.1111/j.1365-246X.1988.tb05903.x [60] Montagner J, Jobert N. 1988. Vectorial tomography—II. Application to the Indian Ocean[J]. Geophysical Journal, 94(2): 309–344. doi: 10.1111/j.1365-246X.1988.tb05904.x [61] Nimiya H, Ikeda T, Tsuji T. 2020. Three-dimensional S wave velocity structure of central Japan estimated by surface-wave tomography using ambient noise[J]. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB019043. [62] Nishida K. 2011. Two-dimensional sensitivity kernels for cross-correlation functions of background surface waves[J]. Comptes Rendus Geoscience, 343(8-9): 584-590. [63] Paige C C, Saunders M A. 1982. LSQR: An algorithm for sparse linear equations and sparse least squares[J]. ACM Transactions on Mathematical Software (TOMS), 8(1): 43–71. doi: 10.1145/355984.355989 [64] Press F. 1957. Determination of crustal structure from phase velocity of Rayleigh waves, part II: San Francisco Bay region[J]. Bulletin of the Seismological Society of America, 47(2): 87–88. doi: 10.1785/BSSA0470020087 [65] Rawlinson N, Sambridge M. 2004. Wave front evolution in strongly heterogeneous layered media using the fast marching method[J]. Geophysical Journal International, 156(3): 631–647. doi: 10.1111/j.1365-246X.2004.02153.x [66] Ritzwoller M H, Levshin A L. 1998. Eurasian surface wave tomography: Group velocities[J]. Journal of Geophysical Research: Solid Earth, 103(B3): 4839–4378. doi: 10.1029/97JB02622 [67] Ritzwoller M H, Shapiro N M, Barmin M P, et al. 2002. Global surface wave diffraction tomography [J]. Journal of Geophysical Research: Solid Earth, 107(B12): 2335. [68] Russell J B, Gaherty J B. 2021. Lithosphere structure and seismic anisotropy offshore eastern North America: Implications for continental breakup and ultra-slow spreading dynamics[J]. Journal of Geophysical Research: Solid Earth, 126(12): e2021JB022955. [69] Sabra K G, Gerstoft P, Roux P, et al. 2005. Extracting time-domain Green’s function estimates from ambient seismic noise[J]. Geophysical Research Letters, 32(3): L03310. [70] Shapiro N M, Ritzwoller M H. 2002. Monte-carlo inversion for a global shear-velocity model of the crust and upper mantle[J]. Geophysical Journal International, 151(1): 88–105. doi: 10.1046/j.1365-246X.2002.01742.x [71] Shapiro N M, Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise [J]. Geophysical Research Letters, 31(7): L07614. [72] Shapiro N M, Campillo M, Stehly L, et al. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 307(5715): 1615–1618. doi: 10.1126/science.1108339 [73] Singer J, Obermann A, Kissling E, et al. 2017. Along-strike variations in the Himalayan orogenic wedge structure in Bhutan from ambient seismic noise tomography[J]. Geochemistry, Geophysics, Geosystems, 18(14): 1483-1498. [74] Smith M L, Dahlen F A. 1973. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium[J]. Journal of Geophysical Research, 78(17): 3321–3333. doi: 10.1029/JB078i017p03321 [75] Spetzler J, Trampert J, Snieder R. 2002. The effect of scattering in surface wave tomography: Surface wave scattering[J]. Geophysical Journal International, 149(3): 755–767. doi: 10.1046/j.1365-246X.2002.01683.x [76] Tanimoto T. 1986a. The Backus-Gilbert approach to the 3-D structure in the upper mantle- I. Lateral variation of surface wave phase velocity with its error and resolution[J]. Geophysical Journal Royal Astronomical Society, 82(1): 105-123. [77] Tanimoto T. 1986b. The Backus-Gilbert approach to the 3-D structure in the upper mantle, II, SH and SV velocity[J]. Geophysical Journal Royal Astronomical Society, 84(1): 49-69. doi: 10.1111/j.1365-246X.1986.tb04344.x [78] Tarantola A, Valette B. 1982. Generalized nonlinear inverse problems solved using the least squares criterion[J]. Reviews of Geophysics, 20(2): 219–232. doi: 10.1029/RG020i002p00219 [79] Trampert J, Woodhouse J H. 1995. Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds[J]. Geophysical Journal International, 122(2): 675–690. doi: 10.1111/j.1365-246X.1995.tb07019.x [80] Tromp J, Luo Y, Hanasoge S, et al. 2010. Noise cross-correlation sensitivity kernels[J]. Geophysical Journal International, 183(2), 791-819. doi: 10.1111/j.1365-246X.2010.04721.x [81] Van Heijst H J, Woodhouse J. 1999. Global high-resolution phase velocity distributions of overtone and fundamental-mode surface waves determined by mode branch stripping[J]. Geophysical Journal International, 137(3): 601–620. doi: 10.1046/j.1365-246x.1999.00825.x [82] 王娟娟, 姚华建, 王伟涛, 等. 2018. 基于背景噪声成像方法的新疆呼图壁储气库地区近地表速度结构研究[J]. 地球物理学报, 61(11): 4436-4447 doi: 10.6038/cjg2018M0025Wang J J, Yao H J, Wang W T, et al. 2018. Study of near-surface velocity structure of the Hutubi gas storage area in Xinjiang from ambient noise tomography[J]. Chinese Journal of Geophysics, 61(11): 4436-4447(in Chinese). doi: 10.6038/cjg2018M0025 [83] Wang K, Jiang C X, Yang Y J, et al. 2020. Crustal deformation in southern California constrained by radial anisotropy from ambient noise adjoint Tomography[J]. Geophysical Research Letters, 47(12): e2020GL088580. [84] Woodhouse J H, Dziewonski A M. 1984. Mapping the upper mantle: Three-dimensional modeling of earth structure by inversion of seismic waveforms[J]. Journal of Geophysical Research: Solid Earth, 89(B7): 5953–5986. doi: 10.1029/JB089iB07p05953 [85] Woodhouse J H. 1988. The Calculation of the Eigenfrequencies and Eigenfunctions of the Free Oscillations of the Earth and Sun[M]// Doornbos D J. Seismological Algorithms: Computational Methods and Computer Programs. Academic Press/Harcourt Brace Jovanovich, 321-370. [86] 吴萍萍, 谭捍东, 陶涛, 等. 2020. 基于交叉梯度约束的电阻率法和背景噪声法三维联合反演研究[J]. 地球物理学报, 63(10): 3912-3930 doi: 10.6038/cjg2020O0066Wu P P, Tan H D, Tao T, et al. 2020. Three-dimensional joint inversion of the resistivity method and ambient noise method with cross-gradient constraints[J]. Chinese Journal of Geophysics, 63(10): 3912-3930(in Chinese). doi: 10.6038/cjg2020O0066 [87] Xie J Y, Ritzwoller M H, Shen W S, et al. 2013. Crustal radial anisotropy across eastern Tibet and the western Yangtze Craton [J]. Journal of Geophysical Research: Solid Earth, 118(8): 4226–4252. doi: 10.1002/jgrb.50296 [88] Yang H F, Duan Y H, Song J H, et al. 2020. Fine structure of the Chenghai Fault Zone, Yunnan, China, constrained from teleseismic travel time and ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 125(7): e2020JB019565. [89] Yang H Y, Hung S H. 2005. Validation of ray and wave theoretical travel times in heterogeneous random media[J]. Geophysical Research Letters, 32(20): L20302. doi: 10.1029/2005GL023501 [90] Yang H Y, Zhao L, Hung S H. 2010. Synthetic seismograms by normal-mode summation: A new derivation and numerical examples: Normal-mode synthetic seismograms[J]. Geophysical Journal International, 183(3): 1613–1632. doi: 10.1111/j.1365-246X.2010.04820.x [91] Yang Y J, Forsyth D W. 2006. Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels[J]. Geophysical Journal International, 166(3): 1148–1160. doi: 10.1111/j.1365-246X.2006.02972.x [92] Yang Y J, Li A B, Ritzwoller M H. 2008. Crustal and uppermost mantle structure in southern Africa revealed from ambient noise and teleseismic tomography[J]. Geophysical Journal International, 174(1): 235–248. doi: 10.1111/j.1365-246X.2008.03779.x [93] Yang Y, Hu S Q, Yao H J, et al. 2020. Crustal shear wave velocity and radial anisotropy in the Xiaojiang fault zone system (SE Tibet) revealed by ambient noise interferometry[J]. Tectonophysics, 792: 228594. doi: 10.1016/j.tecto.2020.228594 [94] Yanovskaya T B, Ditmar P G. 1990. Smoothness criteria in surface wave tomography[J]. Geophysical Journal International, 102(1): 63–72. doi: 10.1111/j.1365-246X.1990.tb00530.x [95] Yao H J, Xu G M, Zhu L B, et al. 2005. Mantle structure from inter-station Rayleigh wave dispersion and its tectonic implication in western China and neighboring regions[J]. Physics of the Earth and Planetary Interiors, 148(1): 39–54. doi: 10.1016/j.pepi.2004.08.006 [96] Yao H J, Van Der Hilst R D, de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis – I. Phase velocity maps[J]. Geophysical Journal International, 166(2): 732–744. doi: 10.1111/j.1365-246X.2006.03028.x [97] Yao H J, Beghein C, Van Der Hilst R D. 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis – II. Crustal and upper-mantle structure[J]. Geophysical Journal International, 173(1): 205–219. doi: 10.1111/j.1365-246X.2007.03696.x [98] Yao H J, Van Der Hilst R D, Montagner J. 2010. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J]. Journal of Geophysical Research: Solid Earth, 115(B12): B12307. doi: 10.1029/2009JB007142 [99] Yao H J. 2015. A method for inversion of layered shear wavespeed azimuthal anisotropy from Rayleigh wave dispersion using the Neighborhood Algorithm[J]. Earthquake Science, 28(1): 59–69. doi: 10.1007/s11589-014-0108-6 [100] Yoshizawa K, Kennett B L N. 2004. Multimode surface wave tomography for the Australian region using a three-stage approach incorporating finite frequency effects[J]. Journal of Geophysical Research: Solid Earth, 109(B2): B02310. [101] Yoshizawa K, Kennett B L N. 2005. Sensitivity kernels for finite-frequency surface waves[J]. Geophysical Journal International, 162(3): 910–926. doi: 10.1111/j.1365-246X.2005.02707.x [102] Young M K, Rawlinson N, Arroucau P, et al. 2011. High-frequency ambient noise tomography of southeast Australia: New constraints on Tasmania’s tectonic past[J]. Geophysical Research Letters, 38(13): L13313. [103] Zhang C, Yao H J, Liu Q Y, et al. 2018. Linear array ambient noise adjoint tomography reveals intense crust-mantle interactions in North China Craton[J]. Journal of Geophysical Research: Solid Earth, 123(1): 368-383. doi: 10.1002/2017JB015019 [104] Zhang Y T, Li H Y, Huang Y F, et al. 2020. Shallow structure of the Longmen Shan Fault Zone from a high-density, short-period seismic array[J]. Bulletin of the Seismological Society of America, 110(1): 38-48. doi: 10.1785/0120190147 [105] Zhang Y Y, Yao H J, Yang H Y, et al. 2018. 3-D crustal shear-wave velocity structure of the Taiwan Strait and Fujian, SE China, revealed by ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 123(9): 8016–8031. doi: 10.1029/2018JB015938 [106] Zhang Y Y, Yao H J, Xu M, et al. 2020. Upper mantle shear-wave velocity structure of southeastern China: Seismic evidence for magma activities in the late Mesozoic to the Cenozoic[J]. Geochemistry, Geophysics, Geosystems, 21(8): e2020GC009103. [107] Zhang Y Y, Yao H J, Xu M, et al. 2022. Radial anisotropy in the crust beneath Fujian and the Taiwan strait from direct surface-wave tomography[J]. Tectonophysics, 827: 229270. doi: 10.1016/j.tecto.2022.229270 [108] Zhang Z Q, Yao H J, Yang Y. 2020. Shear wave velocity structure of the crust and upper mantle in southeastern Tibet and its geodynamic implications[J]. Science China Earth Sciences, 63(9): 1278–1293. doi: 10.1007/s11430-020-9625-3 [109] Zhang Z Q, Yao H J, Wang W T, et al. 2022. 3-D crustal azimuthal anisotropy reveals multi-stage deformation processes of the Sichuan Basin and its adjacent area, SW China[J]. Journal of Geophysical Research: Solid Earth, 127(1): e2021JB023289. [110] Zhao K F, Yang Y J, Luo Y H. 2020. Broadband finite frequency ambient noise tomography: A case study in the western United States using USArray stations[J]. Journal of Geophysical Research: Solid Earth, 125(6): e2019JB019314. [111] Zhou M, Tian X F, Wang F Y, et al. 2018. Shallow velocity structure of the Luoyang basin derived from dense array observations of urban ambient noise[J]. Earthquake Science, 31(5-6): 252–261. doi: 10.29382/eqs-2018-0252-5 -