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Abstract: To elucidate the contact relationship between Indian and Eurasian plates along the Yarlung-Zangbo
suture zone (IYS) and associated geodynamic processes, we acquired a high-resolution magnetotelluric (MT) pro-

file extending 20 km across the Motuo fault zone near Beibeng Township, Motuo County, eastern Xizang. This NW-
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SE oriented transect employed 30 MT stations with approximately 300-m spacing, covering frequency bands of
10000-0.0001 Hz to resolve crustal structure down to 30 km depth. Key findings from the electrical resistivity
model reveal: (1) At shallow crustal levels (<5 km depth), the Motuo fault system exhibits a negative flower struc-
ture characterized by downward-converging conductive shear zones, diagnostic of dominant strike-slip deforma-
tion. (2) Preservation of Indian slab subduction traces beneath the Lhasa Block along the 1Y'S, with possible deve-
lopment of a pop-up structure in the Indian upper crust near the eastern Himalayan syntaxis. (3) The resistive Lhasa
Terrane upper crust is ~20 km thick —33% thinner than the 30-km average in southern Xizang. This disparity im-
plies either: (i) incomplete syn-collisional crustal shortening due to strain partitioning into strike-slip faults, or (ii)
absence of crustal growth episodes that thickened the Lhasa Terrane. (4) A mid-crustal conductor at 15-30 km
depth aligns with the suture zone. Its upward-flaring geometry indicates southward migration of melts from the
Lhasa lower crust, which is facilitated by transpressional uplift along the IYS.These results demonstrate that the
Motuo fault system operates as a crustal-scale transfer zone, where strike-slip kinematics preserve early collisional
features while enabling melt migration through reactivated suture structures. The integrated model provides new
constraints on strain accommodation mechanisms during continental indentation.
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Fig. 2 Typical apparent resistivity and phase curves (location marked in Fig. 1)
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20 km [ 54 HEE MT LRGSR, it — B4R
T R A IR PSS R RRAE . AT i MT H TS5
WA MT #IHZE R (CERIFTTE, 2023) AR
By TEONT R0 YT 4% G T S T T 1 P R A
8 A AP S MT ST S (B 6), S
Wi ZETEREE (<5 km) PN GRStk
Fits, H&EN WA B REGE, keI PE R 5
PUCEE (2018) %k 28 Jlin W 247 (1 A8 T AN i 18 By 2
WEFLEE 5, IX ] RE 5 R L PO AR o Ak A L HE RS
A N7 5% Mk 2 BB 0 I R AR O BT
B BEAR B METL 4% Gl I b R R g R R 1R
I, MAREEAT T SR BT 2wy 1, T R A T
2055 B B B SR AR I 1S TR IS AR AR AT (FETUC
45 2018; Xuetal., 2011) . 45 M IRIS Hdis & T 2%
1) 1970—2013 4 #h 8 H 5%, ARG 45 N R &
(M>5.0) WIRESREAL. ERHES B 2 MT il

A A R (B 6a), 7 TRIWE
FLAR SR N 1R E1 BRI L) N 25 km, {7 Tz
MR B2 FEHIRELN 17 km. SAEKE, XH
A H 5 H) o3 A E R AR C3 I, X 2R B DU
W 2L A% 0 ) T S X I C3, T RE ML TR B A i
A RN X IRA) 3 B T A% 0. 5 2 BT 1 7 Ak
BEIME2 —HREEREE, XBTFLHAR
(1 s BRI WL A BT 5. 58 Tt S B P R VR AL A 0 T 2
DL IERTZFER PR (ER5E, 2017, Z=[E
S, 020200, #ELIM S, ARG & A4 R3 R4
T TEAS AT, B RTReA T — N BE LR IR W 2L Bt
Iy TN T E2, B[R R B AR ) 5 A Hh R
—H (Xieetal, 2021), FEAFLEM. W0
MR FE I, = Sk C3 MAZ O X, mT e R =i
REBEE R IER, WA R &R AR

R AT LR A R (SRR KSR, 2023) Rt E
Al 48 7y bt 576 T P i e TSt v 2 440 1 A P
PrgE iR e 2 b SRS EERALR, s
B G 89°F P ilr S S M B (FBIE K &F, 2023) K&
MT #4558 (Wang et al., 2024) [xFEL, RILED
£ bt 52 ) f5 e A TVOARGE ph 478 A 1 R AR AE = S hr
R 13 25 10 SR B W 22 B O T Re R RE A AE
(Bl 6a) . tRAET 1 £ B R AR, Fr g Hh i
(e L 5 R T e 20 km, B VR FE R B
B A G . BIPE S SR ZI7E 17 km IR/
Ay VA IR B e DX A BB FE T 30 km
SRR (BFREAE, 2023; Wang et al., 2017, 2024)
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TETH I, B KR 7E 65 Ma R AEWI 4G
B, ZJaHH4kE I (40—26 Ma) Ml Al i
(25—0 Ma) o (EHGHRSE, 20200; KL%
F 25 Ma ) hiifE Rt R, DLED R RlAR A IR RS20
T R BRI, AE I A D (X)X
TERGE EW [ & A7 (1 37 tH 4 ol -8 400 o 5 2R 2 e
TE 23X 6 AN [R] B IR P ) 38 - 25 S V6 300 B 1 98 P
DX 7 6% M A R () b 5. BT 9 W 2 o e AR A
T 4 SR I M X B 1 M5, T RESE RUNIE R 4
J3 R i b DX TS A 5 2 P B A g S PR A 4 -4
AR R I RO H R A IR (R KA, 2023) &
B, R R A R M 5 B TR P TR 3
S A A BT 1 0 A Hh 52 0 s AR T
g pE L X R bt e 5 AR ) a4 5 T b [X C T b
o (M ERE 225, T RE & Bk Z J5 Rl FE B B 26 A
FH S S0 5 A 58 50 B 25 (10 7 T A FH R B R T
KEMICRAE R, NMrESNH X R T KRR
T LAY B — S b SR

4.2 HHESEHK

KT 7w SR C3 SRR ML, A B
3 HL S IR 7 DA 56 352 38 2 2 A AR P e R N A7 L
ANFIBUE],  HAEAS [F) 438 B 0 A P 22 5. Hb 7 ik
BRI EE NS T3, a2 ALRTITRRE
HhAH B G B & Ehi K (Tournerie and Chouteau,
2005). H B FE BT YA R E A K] K (Becken and
Ritter, 2012) B 7K 2 B2 FE TR i 48 (Bertrand et
al., 2009) DL AH FL% I8 150 0 M5 il A% (Brasse et
al., 2002) . N HBFEH S EALEI E] R S S A )
MR R R ARG, it el A T AN A
A R AE IR E N 450~700C, & 71K T
300 MPa), EZHWNR KA A EMAIN A
( Christensen and Mooney, 1995; Rudnick and Foun-
tain, 1995) . MLk, FFELEE BRUTAM I X S eh A
5 tH 8k R IE g8 5 BT, ORI A B A
SR RAERE B IR L . IR AGEJF R T, HAehs
ks S B R AR (Yang et al.,, 2015) . itk
BAEB SN SR, [EEHERY) N H & ik
(279 0.7 wt.%), HERAY) 51 1 & T L 8 A
— MR BER N 340 FEL (Allegre et al., 1995) .
FEh, BORGELE S K N EIK, SSAEf R,
FE T 24 R AN S ) 564 T R AR IR IR R HE R
Bl g SUA R E RS TR A, IR
WM RO )R, 2RI 13 wt.% K,

KR ERG 7S T4 SOTKT K S & (Sel-
way, 2014) . Z8 EFTIR, A I S SR AR
PREBF A, R vl G TANFEHLE] Gk & &
WA R WE . A SRS, TR R 2 Fil
il o [F 4R FH 45 2R

I AR AL 1 4 A T A AR R R B L LR R
UIESEZ i M/ P o T 0 DA i e B DA =R N
C3 BRI, Ao 58 e JE AN A0 ) PT BEAS 22 72 K
BN EEE I 2R M e 1T N = 22 o e i N Y <2
TETHEPER Ethsirf, Ao R 2 25 0 2 B AL
/b B %E FE 4 H 52 X 3 ( Connolly and  Podlad-
chikov, 2004) . T Hb 76 () 5 A 38 AL T A A A
AT e 2 I o il P B 0 1 T v T R AR AR AR K
T 0 B8 ey 3 P S S T 287 0 5 3R AL U v 3 L
i, ARYETS B PR S R, =Sk C3 TRE A
W R AV X (P A IR T 9 P I 7R R ) 43 A 2R B
TR C3 X O X AT RE 2 B0 1) B o 0 i
AT R D i RE IR AR SEER R B, TR AR
THIEALIRE 29 1200°C, 146 A K A7 AE S
T, BB E R RER{KE 650°C (Holland and Pow-
ell, 2001) . Chen %5 (2018) FHHi, /K SER
(s OL R, 7= AR 040 I fik BT 75 1L BE 200 760°C,
5 R HL X P 27 90 mW/m? [ #43% (Hu et al., 2000)
B 20 km VR JEALRERS KA IE RIS (Xie
etal, 2021) . H AT IGH 1B 28 B X i 2 T 1
FeAIAEEAE, (H SR M DAL T 758K e i ) 2R R 3
AT R 1L R AR R IE A A, AR
{EL ] BEAH B . I8 H A = RO B Ll o] g
M KERIL S (Xie etal., 2021): JEUF RS, B4R
TIARGR DS TGN . EH T 58 T b X 5% B 8
DRI, A 55 16D TS 1 A A A B T 1k R AU 1)
. Nabelek f1 Nabelek (2014) f& i, JEEZLN
10~20 km [ 1t b5 AR N AR G 8 £2 &y Hh 7
[ Je iR B, IX — R S5 A FE MR R B b e
(1 )& B — B30 2 Hb e P 2 I AR T 2 TR AR AE SR U &
FERCMAATRE R — AN BT AE, VA S R R 1
A5 i T RE A A S A s AR T A 2 AR X
THCR B AR 3R, WS IR A G A5 R R B R
B 77 AE W 22 Bl i 2425 30 % (Peng et al., 2016),
I LAZIRI R IR 18 5 B 2 7E 25 (7] b 51 R
O P30 2 R, T AS R AN ASAE JR) 0 1 X T B e
Fe AR C3. AL T 4451 T 7 I i 22 F = oA
N A S C3, SiE X (88°E~92°E)
MT 25 R 4aRs LR —FF,  IHL g™ HufR T 7 f74E
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— AN VLA G AT IR T LR EE  (Wang et al.,
2024; Wei et al., 2001; Xie et al, 2021) . $7 % Hh A1)
R Hb 5E I R 2 AT K T E I R 0 A A

(Dong et al., 2016; Wang et al., 2017, 2023), &%
& C3 AT REARTR T hu % B A Hb 52 5 0 S YD VR
45 MR R s B I AR

5 45

AW FUAE S i 2L 15 i 2 B 3E I A 5 s i
FAKIE 20 km (R FER MT BT, KHSKETT
O AL 32 e 188 S B v 17 X il A e 1) PR 0 4
FEJRFAIE PR PRl 0] T ) PRV 5 A RS B4 R 1 Al
A1 I 25 8] JRE AT RFALL 5 B S8l T 2 AE e T
(<5km) EINFEGFEICERK ML RE, B
BT W 2L PRV RF AL BT 25 ) e AR A 3 45 2 i
X R AR RO ) B e, AR R BIAIER A4
JF3 ek P L XK R 42 P I RE R B B, T 28l 2
7 (R A R 7 KRR e e &, AT
A S5 5 DX DR B 7 Kt s 5 ST B ) — S 47 R
8. SR TR T TRt e A A v T R AR, SR R
I LA BT 0 R SR 17 R I A% I AR i R T PITERL

BUs

SR = Aor H A N F) E B R AL. JE PR E  X B AR B
JTo PHIECE i DX 7 B 2 T SR LA K [ e i A B A
TARHR S F IR I SRR, Bl FE b5 e 25 =) S Rk A7) 22
A O BOR N SUNIHA i A B AR AR N 5B B A
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