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摘要：“23.7”北京强降雨事件诱发了多处山洪泥石流地质灾害事件，造成了 33人死亡、18人失踪，经济损失巨大，

引起了社会的广泛关注. 当前地质灾害监测预警系统难以适应复杂环境下的灾害精准预警需求，发展精细化监测预警技术是

山地灾害与工程灾变防控研究的热点和难点. 本研究通过实地考察以及附近地震台站连续记录分析，确定了北京西山脚下的

车耳营村山洪泥石流发生于 2023年 7月 31日 3点 36分（UTC+0时间），洪峰高度约 3.5 m. 此次灾害事件激发的地震记录

波形呈现纺锤形，持续时间较长约 100 min. 本研究分别采用长短时间窗比值、统计学本福特定律以及基于频率特征检测的方

法，分别对 LQS台站记录的车耳营山洪泥石流事件波形进行识别. 结果表明：传统的长短时窗比值判识方法，难以提出有效

阈值区分背景噪声和长时间的山洪泥石流过程. 基于统计学本福特定律的识别方法，在没有噪声阈值的情况下，难以识别灾

害事件；根据背景噪声设置统计阈值的情况下，能够检测识别到灾害事件. 基于质心频率的检测方法，有效地利用了高能量

事件丰富的时频幅值变化，可以在没有先验信息条件的情况下，能够有效且准确地识别距离 1.5 km小型山洪泥石流事件. 该
方法提高了基于地震记录信号的地质灾害识别检测效率，有望在将来北京地区密集台网监测的情况下，为地质灾害防灾减灾

系统提供新技术.
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Geological disaster event detection based on seismic signals: A case study of
"23.7" Beijing flush flood and debris flow
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Abstract: The "23.7" heavy rainfall event in Beijing triggered multiple geological disasters of flush flood and
debris flows, resulting in 33 deaths, 18 missing persons, and significant economic losses, which has drawn wide-
spread social attention. Currently, geological disaster monitoring and early warning systems struggle to achieve pre-
cise warning in complex environments, making the development of refined monitoring and early warning technolo-
gies a hot and challenging topic in the research of mountain disaster and engineering disaster prevention and con-
trol. Through field investigations and the analysis of continuous records from nearby seismic stations, this study de-
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termined that the debris flow at Che'erying Village at the foot of the Western Hills in Beijing occurred at 03:36 on
July 31, 2023 (UTC+0, time), with the flood peak height of approximately 3.5 m. The seismic records triggered by
this  disaster  event  exhibited  a  spindle  shape,  lasting  for  about  100  minutes.  This  study  employed  three
methods—the  long-term and  short-term window ratio,  the  statistical  Benford's  Law,  and  frequency-based  feature
detection, to identify the waveform of the Che'erying flash flood and debris flow event recorded at the LQS station.
The results indicate that the traditional long-term and short-term window ratio method struggled to establish an ef-
fective threshold to distinguish between background noise and the prolonged process of the flash flood and debris
flow, failing to identify this event. The identification method based on Benford's Law could not detect the disaster
event without a noise threshold; however, when a statistical threshold based on background noise was set,  it  suc-
cessfully  detected  and identified  the  disaster  event.  The  centroid  frequency-based detection  method,  requiring  no
prior information, effectively utilizes the rich time-frequency amplitude variations of high-energy events to accur-
ately  identify  the  small-scale flash  flood  and  debris  flow  event  at  a  distance  of  1.5  kilometers.  This  method   en-
hances the efficiency of geological disaster identification and detection based on seismic signals and holds promise
for providing more effective technology, particularly with the dense seismic network in the Beijing area in the fu-
ture.

Keywords: "23.7" Beijing flush flood and debris flow; seismic signal processing; based on centroid frequency
detection method

 0    引　言

2023年 7月底至 8月初，北京地区受台风“杜

苏芮”的影响，爆发了“23.7”强降雨事件，并在

北京北部和西部山区诱发了多处山洪泥石流地质灾

害事件. 造成了 33人死亡、18人失踪，对山区基

础设施（公路、水库、供水供电管线、通讯设施等）

破坏严重，经济损失巨大，引起了社会的广泛关

注. 目前，发展精细化监测预警技术是山地灾害与

工程灾变防控研究的热点和难点.
常规的山地灾害监测预警工作，主要分为两类：

（1）以气象水文激发因子监测为主的灾害中长期

风险预警；（2）以山地灾害动力过程监测的灾害

短临警报. 中长期风险预警系统根据经验模型，当

区域降雨量达到地灾起动阈值后进行灾害风险预警

（丁桂伶等, 2017; Guo et al., 2016; 韦方强等, 2005），
但该方法提供的时间和地点信息都相对宏观模糊.
现有的短临警报系统针对明确灾害点，在附近安

装 GNSS位移监测仪、含水率计、泥石流断线报警

设备、超声波水位计、冲击力检测器、泥位计等接

触式传感设备（Arattano and Marchi, 2008; Badoux
et al., 2009; 章书成和余南阳, 2010），对流域内灾

害动力过程进行监测，提供准确的灾害运动信息.
这些观测设备存在成本高、覆盖范围小等技术瓶颈，

且常常被灾害损毁，目前的观测技术难以适应复杂

环境下灾害精准预警的需求. 近年来，利用地震记

录信号分析地质灾害过程的研究迅速发展（Bai et
al., 2022; 邓凯丰等, 2023; Qian et al., 2021; 盛敏汉

等, 2018; Tsai et al., 2012; Xie et al., 2020; Yan et al.,
2022; Zhang Z et al., 2024），其非接触式传感、高

时空分辨率、广覆盖的特征，为地质灾害监测预警

技术提供了新思路.
基于地震记录信号的山地灾害过程事件识别是

监测预警的关键问题，目前研究以信号幅值特征检

测算法为主. 例如，经典的长短时间窗比 STA/LTA
算法，该方法规避了单一阈值对不同地域不同事件

的依赖性以及信号毛刺的影响（黄锋等, 2025; 刘翰

林和吴庆举 ,  2017; 刘劲松等 ,  2013;  Stevenson,
1976），适用于初至震相明显、信噪比高、持续时

间较短（秒级 -分钟量级）的事件 .  Coviello等
（2019）利用长短时间窗振幅平均值比检测了意大

利东部阿尔卑斯山 Gadria泥石流事件，波形事件

持续时间 2～3 min，台站布设距离沟道约 10 m，

产生了明显的震动信号，该方法取得了良好的检测

效果. 波形互相关模板匹配检测方法（Gibbons et
al., 2007; Li and Zhan, 2018; Shelly et al., 2007），利

用模板事件对连续波形进行事件提取，基于波形相

似度区分不同类型事件，Ma等（2020）通过改进

模板匹配方法，检测了乌鲁木齐一号冰川的冰震事

件，提高了低信噪比下事件检测率. 该算法要求整

段事件波形计算互相关，侧重于后期处理，难以有

效应用于在灾害短临警报.
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国内外学者发展了一些基于机器学习的新方法

（Chmiel et al., 2021; 李怀良等, 2024），通过将大

量的事件波形数据、时频特征等作为输入以训练模

型，该方法应用于有密集观测台网的瑞士 Ill-
graben泥石流观测系统，取得了较好的识别效果.
但该方法需要大量灾害事件训练集，难以适用于台

网稀疏地区的灾害事件. Zhou等（2024）将经济学

中广泛应用的本福特定律（Benford's Law）统计方

法，用于地质灾害地表运动过程事件波形分析中，

以瑞士 Illgraben大型天然泥石流沟道附近的台站波

形记录为例，开发了基于本福特定律首位数信息熵

分布特征的地表灾害过程检测算法. 而大多发生山

地灾害的区域观测台网稀疏，台站与灾害事件的相

距几公里甚至更远，现有方法的适应性还需要进一

步检测. 本文以北京“23.7”强降雨激发的山洪泥

石流为研究对象，通过对首都圈附近台站连续波形

记录的时频特征分析，分别利用长短时间窗比、本

福特定律进行灾害事件识别，进一步提出考虑质心

频率的灾害事件检测方法，最后展望了未来首都圈

山地灾害监测系统的设计方案.

 1    西山区域地震观测记录和山洪泥石

流事件

本研究收集了 2023年 7月 28日—8月 1日首

都圈及附近宽频带数字台网的连续波形记录，台站

间距 10～30 km，采样率为 100 Hz，经过去尖端和

去均值等预处理过程，通过短时傅里叶变换计算得

到不同台站的时频谱图. 有明显波形反应的台站主

要集中在“23.7”降雨强度大的北京西南山区. 在
该区域附近的三个台站，均发现有明显的区域强降

雨及山洪泥石流过程引起的高能量地面震动信号

（图 1），包括北京海淀区龙泉寺台站（LQS）属

于 II类台基噪声水平. 房山区上方山台站（SFS）
属于 I类台基噪声水平（侯颉等，2019）；以及河

北张家口塔儿寺（TAS）台站等. 另外还有斋堂水

库附近 ZHT台站，当时受洪水影响通讯中断，数

据只传输到 7月 31日，造成此台站数据缺失.
北京西山山脉经历多期构造演化过程，主要分

布火山岩和花岗岩. 岩体受构造运动与风化影响发

育多组节理，结构破碎，为泥石流发生提供了充足

的物源条件. 在龙泉寺 LQS台站附近的车耳营村小

流域和七王坟村小流域内支毛沟发育，主沟、支沟

及次级支沟呈树枝状，为泥石流水源汇集提供了有

利条件（图 2a）. 据村民描述，受区域强降雨影响，

在北京时间 2023年 7月 30日七王坟村发生泥石流，

次日中午 11点车耳营村发生山洪泥石流.
现场调查结果表明，车耳营村山洪泥石流沟道

北侧花岗岩体崩滑面垂直高差约 93 m（图 2b），
形成长约 700 m的流通区，沟道宽度约 20 m左右，

面积 0.04 km2，占小流域总面积 1.5%. 沟内分布有

巨型花岗岩石块和火山碎屑岩块（直径 5～10 m）.
巨石在泥石流推移过程中，散落在沟道内形成多处

陡坎，高约 3～4 m，形成自然堤坝对巨石起到拦

截作用（Zhang Y et al.,  2024），沟口山洪泥痕显

示当时洪峰高度为 3.5 m（图 2d）. LQS台站位于

山洪泥石流沟道东北侧约 1.5 km，此次山洪泥石流

事件在 LQS台站有清晰的波形记录，信号（对应

图 3a中 13 000～17 000  s）和噪声（图 3a中 0～
4 000 s）功率均方根比值为 19.3 dB，事件发生于

2023年 7月 31日 3时 36分（±5  min,  UTC+0时
间），持续时间约 100 min，激发了 3～45 Hz频率

波段的高能量信号. 山洪泥石流地表过程主要激发

高频波形信号，这些波形信号随着距离增加快速衰

减 . 随着距离增加，灾害次近的台站是 BJT台站

（距离 11.4 km），SSL台站（距离 21.4 km）未见

明显的降雨及山洪泥石流信号. 本研究以 LQS台站

记录的车耳营村小流域的山洪泥石流事件波形作为

案例，探究基于地震记录信号不同检测方法的适用

性和稳定性.

 2    基于幅值特征事件检测识别方法

 2.1    长短时间窗比检测

长短时间窗比（STA/LTA）方法为基于震动信

号检测高能量事件的经典算法，通过计算两个不同

长度时间窗口内信号的幅值特征函数比值，判断比

值是否超过设定的阈值，实现高能量事件的自动识

别（公式 1-4）. 当信号到达时，短时窗 STA平均

幅值特征变化比 LTA变化快，相应的 STA/LTA值

会突然增大，这种突变通常与高能量事件的到来相

关联，该算法广泛应用于微震信号拾取. 而山洪泥

石流识别与常规微震识别存在较大不同，微震识别

通常拾取 P波初至信号，时窗长度依据微震信号主

周期设置为几秒（刘晗和张建中，2014）.
本研究通过 LQS台站记录的 2023年 7月 31
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日 03:36（UTC+0时间）车耳营村山洪泥石流事件

和 2023年 7月 28日 19:23:46（UTC+0时间）印度

安达曼群岛地震事件，作为案例进行对比分析. 具
体选取事件前后共 20 000 s数据，根据高淑芳等

（2008）利用谐波信号推导论证的兼具信号振幅和

频率变化特征的公式（3），设置特征函数. 长短时

间窗比值判识方法（STA/LTA）准确区分事件和噪

声的关键在于阈值的选取，而阈值受时窗长度影响

（刘晗和张建中，2014）. 本研究设置了短时窗 2 s、
5 s、10 s，长时窗为短时窗的 10倍长（图 3），分

别计算其长短时窗内特征函数比值随时间变化：

STAi =
1
N

i∑
n=i−N+1

CF(n) (1)

LTAi =
1
M

i∑
n=i−M+1

CF(n) (2)

CF(n) =
√

Y (n)2+ [Y (n)−Y(n−1)]2 (3)

R =
STAi

LTAi
(4)

i N M

Y (n) n CF(n)

R

其中， 表示采样时刻， 表示长时窗的长度， 表

示短时窗的长度， 表示 时刻的幅值， 表

示特征函数值， 为长短时窗比值.
长短时间窗比值判识方法的适用性，主要在于

目标事件波形，是否满足短时间内波形能量迅速增

加的假设. 即当信号达到时，STA要比 LTA变化得

快，相应的 STA/LTA值会有明显增加，如图 3b比
值增加一个数量级. 地震事件激发体波和面波信号，

当体波初至震相到达台站时，波形能量瞬间增加，

STA/LTA方法能够有效识别地震信号与背景噪声.
而山洪泥石流等地表运动过程主要激发面波信号，

体波信号非常微弱. 随着山洪泥石流龙头运动逐渐
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图 1      （a）北京市及周边地区国家固定台网分布. 其中，红色线框标出的三个台站, 分别表示记录到由强降雨及地质灾害过

程引起明显地面震动的台站；（b-d）LQS台站、TAS台站、SFS台站垂向分量 2023年 7月 28日到 8月 1日
（UTC+0时间）之间的连续波形原始记录的时频谱图. 暖色调表示高能量事件信号，冷色调表示低能量背景噪声

Fig. 1    (a) Seismic stations (triangles) around Beijing, China. Among them, the three stations marked with red borders indicate those
that have recorded seismic motions caused by heavy rainfall and geological disaster processes; (b-d) Spectrograms of the origi-
nal continuous recordings for the vertical component at stations LQS, TAS, and SFS from July 28 to August 1, 2023 (UTC+0,
time). Warm tones represent high-energy event signals, while cool tones indicate low-energy background noise
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靠近台站，波形峰值逐渐增加至最大. 泥石流整段

波形呈现纺锤状，能量缓慢增加，无明显初至震

相. STA/LTA比值虽然对泥石流事件有一定的响应，

但其比值较小（小于 4），难以和背景噪声进行有

效区分. 因此，此方法不适用于识别距离超过数十

米的小型山洪泥石流事件（Coviello et al., 2019）.

 2.2    基于本福特定律（Benford's Law）拟合度的

事件检测

近年来，国内外学者们将统计学规律用于事件

监测分析中，Sambridge等（2010）统计分析了天

文学、地球物理学、数学、工程学等不同领域的观

测量的首位数，呈现幂律分布特征（公式 5），满

足本福特定律. 该定律表明，首位数为 1的观测量

出现概率接近 0.301，首位数为 2的观测量出现概

率接近 0.176，依次类推得到首位数 1～9的出现概

率. 将本福特定律应用在地震记录时序信号分析中，

发现台站波形记录往往受周围持续噪声源影响，呈

现周期规律性的分布特征，而当地震、滑坡、山洪

泥石流等高能量异常事件发生时，信号振幅变化丰

富，此时的首位数分布特征与本福特定律更加接

近. Zhou等（2024）开发了基于本福特定律，统计

固定噪声阈值以上的首位数信息熵分布特征，计算

与基于本福特定律拟合度的检测算法，该方法的公

式如下：

P (d) = log10

(
1+d−1

)
(5)

ϕ = 1−
 9∑

d=1

[
P(d)obs−P (d)

]2
P (d)


1/2

(6)

d P (d)

P(d)obs

ϕ

公式中， 表示从 1～9的数值， 表示遵循本福

特定律的首位数为 1～9的分布概率， 为对

时序信号实际统计中首位数 1～9出现的频率， 表

征首位数实际分布与本福特定律的拟合度.

ϕ ϕ

ϕ

本文基于本福特定律拟合度对此次山洪泥石流

数据进行识别检测，将原始电信号记录进行去均值

的操作，本文设置 100 s时长的滑动窗口，统计某

个阈值之上的每个窗口时间序列波形的首位数分布

特征，并计算每个窗口下首位数分布特征与本福特

定律的拟合度 ，得到 随时间变化的曲线. 本文分

别测试了三种不同噪声阈值 0、457（阈值选取来

自 7月 31日波形振幅均值）、692（阈值选取来

自 7月 30日—31日连续波形振幅均值）下，波形

振幅首位数分布与本福特定律拟合度 的分布情况.
结果表明，当不设置噪声阈值的情况下，整段波形

 

N车耳营村小流域

(a) (b)

(c)

(d)

1.75 m

3.5 m

小流域集水区

龙泉寺LQS台站

天然沟道陡坎

LQS台站
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七王坟村小流域

岩体崩滑面-(b)

泥石流沟道-(c)

山洪泥痕-(d)

图 2      （a）LQS台站与附近泥石流分布位置（影像来源于吉林一号）；（b）花岗岩体崩滑面垂直高差约 93 m；（c）泥石

流沟道内火山碎屑岩和花岗岩的巨型石块（直径 5～10 m）；（d）沟口山洪泥痕高约 3.5 m
Fig. 2    (a) Distribution of LQS station and nearby debris flows (image source: Jilin-1 Satellite); (b) Granite rock mass collapse and

sliding surface with a vertical height difference of 93 m; (c) Within the debris flow gully, there are boulders of pyroclastic rock
and granite with diameters ranging from 5 to 10 meters; (d) The height of mud crack caused by flush flood is approximately
3.5 m
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拟合度均大于 0.8，背景噪声和山洪泥石流事件没

有区分度. 当阈值设置为 457时，可以明显区别背

景噪声（−1.0）、强降雨（>−0.2）和山洪泥石流

事件（>0.0）. 当阈值设置为 692时，可以将强降

雨归为背景噪声中（−1.0），并与山洪泥石流事件

（>−0.5）进行明显分类. 此方法在通过背景噪声先

验信息分析的情况下，设置特定的噪声阈值，能够

对 1.5 km以外的小型山洪泥石流事件进行识别检测.
基于本福特定律拟合度的事件检测方法，依赖

噪声阈值参数的选取，将噪声与事件信号进行区

分. 该数值与仪器本身噪声以及台站周围环境背景

噪声水平相关（图 4），在将来研究中，会结合不

同台网结构下，不同灾种类别检测的情况，对噪声

阈值参数进行更加系统的研究.

 3    基于频率特征检测识别

山洪泥石流往往激发 1 Hz以上高频波形（All-
stadt  et  al.,  2018; Zhang et  al.,  2021），车耳营村山

fp

fc

P ( fi) fi

P ( fi)

fi ·P ( fi)

P ( f )

fc

洪泥石流主要频率范围主要集中在 3 Hz以上（图 5），
本研究尝试利用峰值频率和质心频率，作为判识山

洪泥石流事件的特征因子. 其中，峰值频率 ，即

某时窗内能量最大所对应的频率；而质心频率 为

信号频谱分布的质心，用来描述信号的主要频率成

分. 质心频率的计算通过短时傅里叶变换，采用汉

宁窗平滑加权函数抑制旁瓣，窗口长度设置为

4 096，后将频率幅值的绝对值平方，获得波形功率

谱密度 ，并转换到分贝单位 dB. 频率 和功率

密度 的乘积表示每个频率点对频谱中心的贡

献. 分子通过积分 得到频率的加权平均频率；

分母对 总功率密度进行积分，表示信号的总能

量，通过比值得到质心频率 ：

fc =

∑
i

fi ·P ( fi)∑
i

P ( fi)
(7)

在计算峰值频率过程中，容易受仪器记录、数

据处理过程中产生的异常信号影响，导致出现极低
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图 3      （a）2023年 7月 31日 03:36（UTC+0时间）车耳营村山洪泥石流事件的波形图和长短时间窗比值分布；（b）2023
年 7月 28日 19:23:46（UTC+0时间）印度安达曼群岛 M6地震事件的波形图和长短时间窗比值分布. 其中，短时窗分

别取 2 s、5 s、10 s，长时窗为短时窗的 10倍长. 黑色波形显示事件前后共 20 000 s波形，红线表示阈值

Fig. 3    Seismic waveform and long-to-short time window ratio on July 31, 2023 03:36 (UTC+0, time) debris flow event in Che'ery-
ing Village, Beijing China (a) and July 28, 2023 19:23:46 (UTC+0, time) M6 earthquake event in the Andaman Islands, India
(b). Short time windows are set to 2 s, 5 s, and 10 s, and the long time window are 10 times the length of the short-term win-
dow, respectively. The black waveform displays approximately 20 000 s of data surrounding the event, and the red line indi-
cates the threshold
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频率或者不连续异常值的假象. 因此，本研究通过

短时傅里叶变换得到某时窗下的频谱，去掉极低和

极高的异常值后，再选取其峰值频率. 结果显示，

LQS台站记录的车耳营山洪泥石流前后 20 000 s波
形的峰值频率集中在 10～20 Hz，但该值只表征了

时窗下最大能量对应的频率，缺乏能量量级信息，

还是难以有效区分降雨信号、山洪泥石流事件以及

背景噪声. 通过公式（7）计算获得波形的质心频率，

该值包含了频率和能量信息. 结果显示，降雨造成

的地震记录波形记录其质心频率主要在 1 Hz附近，

而山洪泥石流运动的波形信号能量更高，其质心频

率大于 5 Hz. 质心频率计算结果稳定连续，且不需

要进行波形去均值的预处理，可以清晰地将山洪泥

石流事件与背景噪声进行区分，能够为山洪泥石流

判识技术提供可靠约束.
利用质心频率方法对 SFS台站和 TAS台站进

行验证，结果表明 SFS台站有明显的山洪泥石流

的波形记录，同时通过遥感影像数据也探测到了距

离台站 0.86 km的泥石流沟道在强降雨前后发生了

明显变化（图 6）. 通过 TAS台站波形记录分析，

周围区域未观察到明显的泥石流事件，主要还是区

域降雨造成的信号，结合卫星影像，该区域植被覆

盖较好，未发育大型泥石流沟道（图 7）. 由此，

通过质心频率的方法可以有效识别出台站附近的山

洪泥石流事件，然而不同区域的泥石流类型、规模、

大石块数量及体积的动力学相关参数也是造成信号
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图 4      （a）基于不同噪声阈值（0、457、692）山洪泥石流波形幅值首位数分布与本福特定律拟合结果. 蓝色线垂向分量原

始波形记录，单位表示振幅值，红色点标记了首位数分布特征与本福特定律拟合度 随时间变化情况. （b）2023年 7
月 30 日、31日和 30—31日（UTC+0时间）连续波形记录中幅值大小统计图. 横坐标为振幅大小，纵坐标为统计频

率，绿色虚线为直方图的包络曲线，红色曲线表示高斯拟合分布曲线

Fig. 4    (a) Fitting results of Benford's Law based on the distribution of first digit of debris flow seismic waveform amplitudes selected
using different noise thresholds (0, 457, 692). Blue lines represents the original seismic waveform recordings of the vertical
component, with units denoting amplitude. Red dots mark the fitness of first digit and Benford's Law at different moments. (b)
Statistical distribution of the continuous waveform amplitude from July 30, July 31, and the period spanning July 30-31, 2023
(UTC+0, time). The horizontal axis represents the amplitude values, while the vertical axis indicates the statistical frequency.
Green dashed lines correspond to the envelope curves of the histogram, and the red curves denote the Gaussian fitted curve
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振幅的关键因素，在未来研究工作中，会考虑灾害

动力学参数与地震波形记录的对应关系.

 4    结论与讨论

本研究通过现场实地调查，确定了“23.7”北

京车耳营山洪泥石流事件，作为“ground truth”案

例，对泥石流波形特征以及不同识别方法检测能力

进行了分析讨论（表 1）. 测试结果表明传统的长

短时窗比值判识方法和基于峰值频率检测的方法，

均无法区分背景噪声和长时间的山洪泥石流过程.
基于统计学本福特定律检测方法的识别能力，需要
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Fig. 5    (a) The original seismic waveform of the vertical component recorded by LQS station; (b) The spectrogram of the seismic data
at  LQS  station,  with  the  window  length  of  4 096  sampling  points;  (c)  Peak  frequency  (purple  crosses)  varies  with  time;
(d) Centroid frequency (blue lines) varies with time
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Fig. 6    Remote images of debris flow channels near SFS station before (a) and after (b) the "23.7" event. Seismic waveform (c) and
power spectrum density (d) recorded by SFS station, as well as centroid frequency various with time (e), where the red dashed
line represents threshold (5 Hz) for the centroid frequency of surface high-energy events
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对波形进行去均值，并依赖噪声阈值的选取. 基于

时频域能量信息的质心频率检测方法，直接对原始

波形进行处理，无需先验条件信息，有效地利用了

高能量事件丰富的时频幅值变化，能够有效且准确

地识别距离 1.5 km小型山洪泥石流事件，将地质

灾害事件识别距离从几十米提高至 1.5 km. 本研究

提出了基于质心频率检测识别方法，与现有的方法

相比，明显提高了识别检测效率. 然而，本文研究

事例较少，未来还需要进一步使用更多地质灾害事

件进行检测. 在后续的工作中我们尝试建立不同地

质灾害事件波形特征（持续时间、频率范围、波形

包络、质心频率等 79个特征参数）信息库，采用

主成分分析（ PCA）、K-最邻近算法（KNN）、
随机森林（RF）、长短期记忆网络（LSTM）及卷

积神经网络（CNN）等机器学习算法进行训练与测

试，并利用训练完成的模型开展泛化实验，以期望

有效准确识别滑坡、泥石流等地质灾害事件.
历史资料表明（史明远，2016；于虹，2018），

元末以来北京地区发生暴雨洪涝灾害的年份，出现

频率约为 45%，平均约 2年一遇；其中重灾年出现

频率为 17%，约 6年一遇. 北京山区地形复杂，山

坡陡峻，切割较深，沟源和支沟沟床比降高；区域

断裂发育，地层岩性组合多样，松散碎屑物质丰

富. 在极端降雨事件影响下，极易形成群发性泥石

流. 北京山区发育的泥石流沟道 705条，分布在房

山、门头沟、怀柔、密云、平谷等 7个区县，涉及

乡镇 61个（图 8）. 花岗岩则在北京山区大面积分

布，崩塌、滑坡与泥石流在花岗岩内最多，在白云

岩和片麻岩中分布次之. 北京山区地质灾害具有高

频次、危害大的特征，本研究针对“23.7”北京山

洪泥石流事件，基于首都圈地震台网台站对灾害事

件进行了特征识别分析，显示出地震监测在地质灾

害运动过程研究中具有巨大潜力.
对于 2023年车耳营山洪泥石流事件，本研究

通过 LQS台站数据进行了事件识别分析，限于现

场观测数据的缺乏，难以判断山洪和泥石流不同阶

段. 目前国家固定台网对于地质灾害事件研究仍较

为稀疏，其观测覆盖范围主要集中在台站附近数公

里以内. 将来随着首都圈台网不断建设和加密，基

于区域密集观测台阵（陈政等 ,  2024; Shen et  al.,
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Fig. 7    Remote images of debris flow channels near TAS station before (a) and after (b) the "23.7" event. Seismic waveform (c) and

power spectrum density (d) recorded by TAS station, as well as centroid frequency various with time (e), where the red dashed
line represents threshold (5 Hz) for the centroid frequency of surface high-energy events

 

表 1    不同识别方法的特征因子与测试结果对比

Table 1    Comparison of feature factors and test results of different identification methods
 

不同方法 特征因子 山洪/泥石流事件识别效果

长短时间窗比值方法 时间域幅值信息（能量） 无法提取有效阈值，难以识别

本福特定律检测方法 时间域幅值信息（能量） 波形预处理，以及背景噪声水平的先验条件，可以识别

峰值频率特征识别方法 时频域峰值能量对应的频率 无法识别

质心频率特征识别方法 时频域能谱的综合信息 无需预处理，能够清晰识别
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2024; 杨婧蕾等, 2024; Zhang et al., 2023），利用聚

束分析、反投影成像等方法（曹博男和盖增喜，

2021；胡久鹏等，2018），研究山洪泥石流等地质

灾害事件动力学过程（Cook et al., 2021）. 除了区

域密集台网，还可以在北京山区选取典型沟道，沿

着沟道选择 3～4个监测断面，布设震动、冲击力、

视频监测、超声波流速流量探测等多元传感器，细

致研究山洪泥石流在上游形成区对沟道的刮铲作用，

在中游流通区对沟道的冲刷侧蚀作用，以及下游堆

积区的致灾过程. 未来有望基于山洪泥石流动力学

综合观测，构建地震观测信号-山洪泥石流物理属

性关系，进一步丰富基于地震观测记录的地质灾害

运动过程反演技术，为地质灾害监测系统提供新

方向.
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