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Abstract: The "23.7" heavy rainfall event in Beijing triggered multiple geological disasters of flush flood and
debris flows, resulting in 33 deaths, 18 missing persons, and significant economic losses, which has drawn wide-
spread social attention. Currently, geological disaster monitoring and early warning systems struggle to achieve pre-
cise warning in complex environments, making the development of refined monitoring and early warning technolo-
gies a hot and challenging topic in the research of mountain disaster and engineering disaster prevention and con-

trol. Through field investigations and the analysis of continuous records from nearby seismic stations, this study de-
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termined that the debris flow at Che'erying Village at the foot of the Western Hills in Beijing occurred at 03:36 on
July 31, 2023 (UTCHO, time), with the flood peak height of approximately 3.5 m. The seismic records triggered by
this disaster event exhibited a spindle shape, lasting for about 100 minutes. This study employed three
methods—the long-term and short-term window ratio, the statistical Benford's Law, and frequency-based feature
detection, to identify the waveform of the Che'erying flash flood and debris flow event recorded at the LQS station.
The results indicate that the traditional long-term and short-term window ratio method struggled to establish an ef-
fective threshold to distinguish between background noise and the prolonged process of the flash flood and debris
flow, failing to identify this event. The identification method based on Benford's Law could not detect the disaster
event without a noise threshold; however, when a statistical threshold based on background noise was set, it suc-
cessfully detected and identified the disaster event. The centroid frequency-based detection method, requiring no
prior information, effectively utilizes the rich time-frequency amplitude variations of high-energy events to accur-
ately identify the small-scale flash flood and debris flow event at a distance of 1.5 kilometers. This method en-
hances the efficiency of geological disaster identification and detection based on seismic signals and holds promise
for providing more effective technology, particularly with the dense seismic network in the Beijing area in the fu-
ture.

Keywords: "23.7" Beijing flush flood and debris flow; seismic signal processing; based on centroid frequency
detection method
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Fig. 1 (a) Seismic stations (triangles) around Beijing, China. Among them, the three stations marked with red borders indicate those

that have recorded seismic motions caused by heavy rainfall and geological disaster processes; (b-d) Spectrograms of the origi-
nal continuous recordings for the vertical component at stations LQS, TAS, and SFS from July 28 to August 1, 2023 (UTCH0,
time). Warm tones represent high-energy event signals, while cool tones indicate low-energy background noise
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Fig.2 (a) Distribution of LQS station and nearby debris flows (image source: Jilin-1 Satellite); (b) Granite rock mass collapse and
sliding surface with a vertical height difference of 93 m; (c) Within the debris flow gully, there are boulders of pyroclastic rock
and granite with diameters ranging from 5 to 10 meters; (d) The height of mud crack caused by flush flood is approximately

35m
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Fig. 3

Seismic waveform and long-to-short time window ratio on July 31, 2023 03:36 (UTC+0, time) debris flow event in Che'ery-

ing Village, Beijing China (a) and July 28, 2023 19:23:46 (UTC+0, time) M6 earthquake event in the Andaman Islands, India
(b). Short time windows are set to 2 s, 5 s, and 10 s, and the long time window are 10 times the length of the short-term win-

dow, respectively. The black waveform displays approximately 20000 s of data surrounding the event, and the red line indi-

cates the threshold
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Fig. 4

(a) Fitting results of Benford's Law based on the distribution of first digit of debris flow seismic waveform amplitudes selected

using different noise thresholds (0, 457, 692). Blue lines represents the original seismic waveform recordings of the vertical
component, with units denoting amplitude. Red dots mark the fitness of first digit and Benford's Law at different moments. (b)
Statistical distribution of the continuous waveform amplitude from July 30, July 31, and the period spanning July 30-31, 2023
(UTCH0, time). The horizontal axis represents the amplitude values, while the vertical axis indicates the statistical frequency.
Green dashed lines correspond to the envelope curves of the histogram, and the red curves denote the Gaussian fitted curve
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