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Abstract: Volatiles (such as H,O, CO,) are the crucial factors controlling the physical-chemical properties and
dynamic processes of the multi-layer system within the Earth, and therein play an important role in plate tectonics,
magmatic-mineral activities, and even the development of the planet's habitable environment. Because volatiles can
drastically alter the physical characteristics of crust-mantle rocks, the primary method for determining their content
and distribution within the Earth is to combine geophysical observations with high-temperature and high-pressure
petrophysical experiments. Of the many physical properties, electrical conductivity is particularly sensitive to the
presence and abundance of trace amounts of volatile materials, and therefore the deep conductivity structure de-
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rived from natural-source electromagnetic (EM) sounding methods such as magnetotellurics (MT) and geomagne-
tic depth sounding (GDS) offers crucial observational information for constraining the distribution of volatiles in
the crust and mantle. This review firstly summarizes the basic principles and characteristics of the major natural-
source EM sounding methods, and presents in detail the high-temperature and high-pressure experimental studies
on the electrical conductivity of major minerals/rocks and melts in the crust and mantle, then reviews typical cases
combining the two methods to study the distribution of deep volatiles in different geological settings. Finally, this
review synthesizes and discusses the existing shortcomings and difficulties of current research, and further pro-
spects the future development directions and potential challenges.

Keywords: volatiles; magnetotellurics; geomagnetic depth sounding; petrophysical experiment; electrical con-

ductivity
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Fig. 1 The distribution and cycling processes of Earth's volatiles (modified from Josh Wood personal website)
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Fig. 2 (a) Power spectra of the Earth's natural magnetic field in different period ranges (data from Constable and Constable, 2023);
(b) Corresponding electromagnetic imaging methods and theoretical skin depths for different period ranges, with the black
shaded area roughly corresponding to the resistivity range of active volcanoes at depth
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Fig. 3 Electrical conductivity distribution of common rocks in the crust (data from Comeau, 2015)
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from 1.00e-04 to 4.00e-01 GPa (from Quist and Marshall, 1969; Samrock et al., 2021); (b) Electrical resistivity of fluid volatiles at
1 wt.% and 16 wt.% HCI concentrations, as determined by Sinmyo and Keppler (2017) (SK17) and Klumbach and Keppler

(2020) (KK20) (data from Cordell et al., 2022)
205.8

logygof=-2.032- +0.8951log;a+

3.891og(¥(T,P)+1og o Io(T,y) (16)

Hr, ofE HCLHIIREE, To(T,y)/2& HCI [ R EE /R
IS

TR SR 5 IR B R R A G, X (15,
16) AN T XPE % RE, 8 E AR L vl g
FEAE U NaCl. HCl 5 i} &= R BE e & )&, A Bh
TS A, SR EHA X (Afanasyev
etal., 2018; Cordell et al., 2022) . [K] AT A ui 7o)
AR NIRRT, AN [E) 3 G O &5 3R 1A A = 24— A
WER, R, SURFERACK, PMASE TR
SRMEAR (B 6b) .

3 AN HEIFRNZSHRBEGHEE

IR A 1RE

B 2 I e LA A T A A AR R KR A
PIFH, P T2 MR A Archie SEfHE (Archie,
1942) ZEEEAE —ERRK L AA 2 mE
AT S AN 78 L (Y B — PR AR A s, A — M
SRR, HEZEHLRPRRAESHE, A%5E
HALW FHEE, WFHRF L0, Archie & H I
Sz M A (Glover et al., 2000; Glover, 2010;
Weitemeyer et al., 2011), #{FRRN:

31

o=Co¢@™" 17)

He, oA FE, CRARFEH (X D,
oot A ER, ORFIEKIERDE, m A

FREE%ESH (K 72, HA mfE 1~1.3 2[R
FEM R AP, m=2 FRoRiEBEMERZE.

B A RIS RIS SRR, KL Archie
FEREA A Ja R W BRI T R HE T RTIEA,
SEEG = P E S R E W, EA E AR AR
R iR AT N N SR, BRI T
EIEJE B X Archie ' (Glover et al., 2000; Ten
Grotenhuis et al., 2005):

o =0mn(l =D +0d™ (18)
ﬁ\:l:'j:
logo(1 — @™
T 4
K o2 BRI BEFE, m. p o5l R R
RHE A ] A P 32 8 1t 2 4
% T Archie 7€ 1#, Hashin-Shtrikman F 54 7Y

WA LR TR S (] 7e):

. [ 3= o

Tus = Uf[l 30— D (01— 0m) ] (20)
- 3¢(0’f—0'm)
Tus =T | 1 3 hor—om| OV

Soth ot Mo 48 WIS F 5F H 55% 0 L B
5T (& 7).

f8 ] Archie & 2 (1) AT 42 25 £ 2 © R0 %5 AH I
FE, HAEAR RS sz HER T T R
il LI =R BRI EABEBA AT (Pommier and
Le-Trong, 2011):

E.+ PAV)

RT (22)

o=09 exp(—
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= = » Archie

(b) g 100 -
% PR N—
N R . —HSER
e H-S T
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200 -
%51>0'2a H'STmﬁ' 225 - ) ‘ i ! | ) ; i !
o <o, HS IR 107" 10! 10 10° 107 10! 10 10 10° 107
o = HLBH /(- m) HBH #/(Q-m)
Kl 7  Archic BB ZIEME. () J7 X Archie Bt EE MR m 1% ; (b) Hashin-Shtrikman 15 (¢) AN [FiEE
B8m T, WAHRSG & - A R SRR, (D AFEERSE m ~, ZHES S - a-RO5 o s e
A4k (5] H Ozaydin and Selway, 2020)
Fig. 7 Sketches showing the conceptual understanding of (a) the phase exponent m in the generalized Archie's law and (b) Hashin-

Shtrikman bounds. Graphs demonstrating the conductivity of (c) a phlogopite-olivine mixture with phlogopite having varying
values of m for a two-phase assemblage; (d) a phlogopite-olivine-orthopyroxene mixture with phlogopite having varying val-
ues of m for a three-phase assemblage (from Ozaydin and Selway, 2020)

K, oo R FRIEAEHE T, RIARIA G 153,
E, NWELEE, RANSME L (83143 Tmol”'K™),
AVHNIEMAEF Ccm®mol™), THIEE (K), P
NHEF] (1 MPa=10°Pa) .

ZHREEE

EEXHAIFE R A K R G, TR, ik
PIFHTCIERIR E R R G, TR EiE— P H B R
TERG P RBINIEN. IEE R ARG, ERER M
AT A —E . A % BT R, 2R
th H,O 1 CO,, JFF AT REHEBE ¥ 1 45 (Newman
and Lowenstern, 2002) . 7 3% 28 [ I s 54 20 45 4
VAR TT RSB BIMIAMUIRAS,  BET A8 I B3 A
R T B A AR R A = FiAH S =1
IR ARG T oo PT BLEK H T X Archie €
A (Glover, 2010) (E 7d):

n

m

Obulk = E ;"
i=1

Hep, o RS TE, oD, miE
WIS H, 7R R

11§ Mmelt
¢f * ¢melt

3.2

(23)

=1 (24)

Hrby mey me mpe 73 AUNYER G AR IR
AH ) T 08 P 2 . 3 [ A O 1 S R AR AR 4y
) o B ATV, DA 2 BB ESFIE (Glover,
2010) . dbAb, FIHuCAETHE, A LSR5 KR
s/ BB R R R EE, DL G PR VAT JR e & A
520 (Cordell et al., 2022) .

TEERE VIR IR RE KA &= 2 A
FREGRARJG, Samrock & (2021) i)
PR BRI B S s A I B R B R ok, bed,
R H R G725 BB A Rhyolite-MELTS,
AJ DA S A [E)E T 25 A RN 25 58 5 A0 240 B A 1 5440
PR (K8, MG =MHAG KM TSR
KMIERMW R, RIERGUAREEL M, %
RARIEEATIE 5 vol.%.

4 R 5T A
41 FEHELT

i 1 7 A SR B BB B R 4 K T I R iR 2
RG2S T CFF K K&, 2015) . H B[ EE KRG FIRK
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(a) RGP AT 8 (p=0.15 GPa) () AR 2080 (p=0.15 GPa) s
100 s : 100 - SO,
90 90 —R
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. MgO
70 70 ¢ B CaO
== ITEIaé)O
g 60 % 60 | ﬁzzooﬁ
;\13 50 ”\? 50 o,
= 40 U6 40 | [k
% & —Yiie
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i ; = i
10 10 —F4
K2
0 - ST e ===
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7/°C 70

Kl 8  FIH Rhyolite-MELTS {1145 it 2 H Fa R . [ERFE K K4 (magmatic volatile phase, MVP) 2 Bl 54 5
. () RENHSMHPERSIEG (o) Zlra s L& 58 (51 3 Samrock et al., 2021)

Fig. 8 Melt, solid and magmatic volatiles phase (MVP) composition and fractions during the course of crystallization as predicted by
Rhyolite-MELTS, (a) system volume fractions and (b) weight fractions within the melt phase only (from Samrock et al., 2021)

KRS AR . H55 T B e e R — & S i
Ly H AR e R e S5 2 ) ol - il 48 3 1 L
H 20 42 90 SEARGE, [ Py oba 76 7 ek e i 22 40
XHRE T K& MT SR T, s & 55eng
g 5 A BB T oG B A W I BE R (Bai et al,
2010; Chen et al., 1996; Dong et al., 2020; Li X et al.,
2020; Rippe and Unsworth, 2010; Sun et al., 2003;
Unsworth et al., 2004, 2005; Wang et al., 2014; Wei et
al., 2001; Zhao et al., 2012) . IX S8 Hff 72 7E & JE 10
NHBFER BB B2 R B AR R, IR
B BRI o 4 Rl sl — 2 (0 3 (R A R S UG
BHL S 9 0 5 B BT N AE AR S M A A4S H B 2 ) i
Fe T, MRYE BRI R b T B R, A
JH ] B 1) Archie 52 AN S 1B ARAK RO & & B4,
Unsworth &8 (2005) R4 250 WM, {F € 245 44
[ FL B RAE N 0.1~0.3 Q-m, FFFEBR AR 8]
ARG HEEVERIATIR N, G5 75 R L X b R
TAFAE 5%~ 14% HIHE 7> fl: 7E5ZR B9 MT Wil
WEFeH, Bai 5% (20100 WIMEE IR B AR /LA (1 HLFH
#90.05~0.20 Q-m, FHEILAH T R HISE R
a8 9 . BRI IRz T
TR v JE S HG T B L R 5 R S IR R AR 23 AT
( Bai et al.,, 2010; Dong et al., 2016; Rippe and
Unsworth, 2010; Xue et al., 2021) . 817, 26 H
e, ZRTEVFE LB, B, &/
AR P A5y R % — RV R
P, PRI o iR FH [ Y ) ) e BH R 2 F 3 P
AIEB, 0w EAR Y B . Lk, SR
P A L BH AR 5 I AR AR ) L AT 23 AT S T
TRV, AL S Archie %€ HEHE DL 78 70

WoIX — R J . Be, AKIIAEE AT 2 5 235 AR Hh
FEEATE R, RE A R, [ R AR A A
(B BH e, T IX e AT 5Tk 2R T K BN L PH
Al

IR TR RIS AR & B AR A ), L
FETF R ) — Lo SO TS R ) R B T — R B
Jifi. 40, Chen %5 (2018) &1 k4K B G R 2 FE IR
B e, fESLI SRR A, WET
AT DXIR SRR B b 52 25 4 IR ) L S e, kT
5O A A 25 T b, HEW T = R P L
b 7 T A T LR RE N 4%~ 16% I & K G 14
(& 10) . Dong 2& (2020) 1E% & 1T iR & 444 LA
M Archie JE it AR Z B0 THSRLGE RIS, AR
AT ST 9 DX 15 H OO M 5 (iR 8 o i DA %
KEKEFZMAFWER T, FIH Guo X5 (2018)
ISR B KA E B SR AN, TS L&
JK4 . Sheng 5 (2021) & 1 4 FH BT S (10 75 ¥4
HUGCE GRS, TR SR L0 R
F HS+IA A T IEAG TR, Ao ik 2% % £
RS, ATHER S B S K S R AL T T vk
T 20 R 2% A

42 EHKIFMAE

A A BRI Rz A, R
FE AR — DRI, TR AR
iy AR A BIPEBT,  RT DU s o3 R T
A ofr iy 5 KBl 0 b 7 P2 (Stern 20025 5K 7 B 4%,
2020; Zheng and Chen, 2016) . 75 KM, )
FrRETR K B AR . S 7K AR BlGE Il S i L
F Bt S, X ] ] b (%) A BN 2 1 o AR EE
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(a) Map showing surface relief of the eastern Qinghai—Xizang Plateau and the adjacent area; (b) Electrical resistivity cross-sec-

tions for eastern Qinghai—Xizang Plateau; (c) Variation of thickness and fluid content (porosity) for a crustal layer with a con-
ductance of 10000 S; (d) Fluid content (porosity) of a 20-km-thick mid-crustal layer required to account for the conductance

of profiles P1 and P4 (from Bai et al., 2010)

EL52MM (Hermann et al., 2006; Manning, 2004; Zheng
etal,2011) . IXEEER AR HTAE XS T8 FRINHITE L
MTCRIGH HA REAEA, BRIy Bkl bt
PEHREFIEE B KL SRS B ' R R R Ay AR MY
A& J5i FNRe B A e 1 O% B X 380 ( Wilson et al.,
2014), &5 k&S VIR G, R3] ) 2 4

DA A AR AR by T 508 4D 5 R Ak 1) i 7K 0
Al AL (Johnson and Plank, 2000; Syracuse et al.,
2010; Van Keken et al., 2002), 5 ZU0H MR A #71F
R Ay ol b 3R RS PR A AT R AR T 7% 36 i
ER CSREWSE, 20200 . HAd, MR AR
T & KR A FIE e, AT DAYRE A S S AR A
JEEEH (Hermann et al., 2006; Huang et al., 2021;
Wannamaker et al., 2009; Yang et al., 2025), fi&

541 B H 8 (Deng et al., 2021; Zhu et al., 2024),
KL (Zhao et al., 2021) .

MT J7 5 5E A HO I i i U, @ T
TNEEVENRAR I 23 AT (Garcia et al., 2015; 5T 14525,
2019; Mu et al., 2022; Ni et al., 2011) . Wanna-
maker %5 (2009) #R#EH7 75 = Marlborough #i[X MT
LI SREL 7 R F B 2R F T, R LA oy b7 b 52
0 8 A AR AR R B A4, B AR AR i
FEAR R KR W B MmA (B 11a);
Worzewski 55 (2011) FJFH MT IS5 50 5T Costa
2120 km P B2 B AR i s 2K A A K 08 B O A
Egbert 55 (2022) A 7 & A5 A1 A 391 MT WLl
gL, HEM Cascadia JNHT X AARI 7340, KIRAA
FEMCER T A IR E AR R, BRI S A
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(a) Simplified geological profile of the northwestern Himalayas and southern Xizang; (b) The relationship between effective

Fig. 10

electrical conductivity and temperature, with the black dashed line indicating the onset of solid rock melting and P1-3 repre-
senting three types of conductivity anomalies; (c, d) The relationship between water content in solid rock and temperature
and melt content, with the black solid line indicating the boundary between no fluid and fluid saturation (from Chen et al.,

2018)

AAXS 455 Chesley 55 (2021) 7E Hikurangi 23k
BOHAT 1 1 FAERI, BT AR K S B i) R
BT IEJE 1 Archie fE AL 1% X 48 1) L IR EE.
Huang 55 (2021) W& 7 &6 D& KR I
AR SE, JFRGHEH [ 2ERA F N b e
B R AT, ol I R AL R A
ERMETAR (EH11b) .

4.3 WANLEX

HER_E R 2 E0K LGS R A EAR Bl 7, ]
DL 8 L AR B Aa) it BRI RS . SR, A Y2 7
KB AR R Y,z B A il 5 00 Kl 3 s 4k VA BT
HARERERE R (Ball et al., 2021) . 51 4K i
XK, HAB R RKAERHHEASIER, SEIM
JRE RNV, TS B P AR ot ¥ I R AR DR A

Al (Mckenzie and Bickle, 1988); # ). (LRZXE
(1) b 02 A AN R Hi Mg b R, 2 R AR TR 0 AL
( Campbell and Griffiths, 1990); b4t, HAE 5
HuWEAT A ELAE 25 A0 BT /N A b 0 o Ji A
S # W] BE 2 S B N K B e CFR e AR 4%,
2023; Rooney et al., 2007; Schilling et al., 1992;
Zhang et al., 2024) . — R, JOLTESAE BT E
FARRAR KL WA A 2 52 B MR B2 L 35 R A &
N HAE R R BT (Brune et al., 2023; White
and Mckenzie, 1989) .
MT 777 A2 TRIE SRR KO LIRTR A K R G
H 711 B (Aivazpourporgou et al., 2015; Bedrosian
et al.,, 2018; Comeau, 2015; Cordell et al., 2018;
Hiibert et al., 2018) . KL X G K E KRG 2%
B UroE KNG ER AR S R R, B I N
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Fig. 11 (a) Nonlinear 2D inversion model of electrical resistivity below the Marlborough—northern Westland district. Seismicity ("+"
symbols) is superposed for a 25-km swath along the magnetotelluric transects (from Wannamaker et al., 2009); (b) The rela-
tionship between the electrical conductivity of forsterite (magnesium-rich olivine) and the proportion of saline aqueous fluid

(from Huang et al., 2021)

JImE R s, KA T AR ZZ 4k (Johnson et
al., 2008; Li et al., 2021; Liu et al., 2021; Valentine
and Perry, 2007) . =4 K Hh L BG4 SR e e A AL
i 8 7 5 A R R 28 1) 7 A FAS REIRAS (Comeau
et al., 2016; Gao et al., 2020; Li et al., 2024; Peacock
et al., 2015; Unsworth and Rondenay, 2013) .

Bowles-Martine Al Schultz (2020) XK H MT
EHEST T Newberry K Ll 25 R FIUS S ZH R, 2R
B —A 3~5 km JREERE KA Z, TR 8%~11%
FR 8 70 i R . b [ AR AL M IX T2 20 A A AR 2K
e OB saRss, 2024), HdLiS%% (2020)

AR A 2R A6 AR AR L B i 39 Ot P R L
RIE APl = FRLPE S S AR R P R, X
B SR P AR KLY ES, S50
PRSI, FIH HS BEARITH R Ol KR =
TWARBNEAR S B 2%~15% 2 8], FHAR PR A
(KL G R AR (Gardés et al.,, 2014) it HK S &
2974 400 ppm. FH T IX %8 J5 35 5 AR A R YR T b
W RS R P RARC L S, R i N I A~ AR v
B K S BRI T ERT Re 2 S EURIEHBIX R
FBEHT A AR K LES R H (Guo Z et al., 2018; Li
etal., 2021; Tang et al., 2014) . 7£ FRKZEM K 1L X,
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Fig. 12 (a) MT imaging results of the Wudalianchi volcanic field; (b) Bulk resistivity as a function of fluid volume fraction (from

Sun et al., 2023)

Sun %5 (2023) TR A MMM S5 R (E 122),
FIHMEIEJG B Archie € fEIHH B A AR &2 &
IR I b 5E A A F PR (& 120D, HEDKRE
SRR BT B KR R V)RR A b 5 55
(2> BTt

44 RBRERIEMX

eI R KRt 58 L Bl A 1 22 AR E X
S T ) R RS T IR E L AR A
KUES D IR EEAR. BN RS
LT AORAF K it X SR 2% R AR M4 g 2, Bt

( Artemieva and Mooney, 2001; & #£ = 4§, 2020) .
RO M PR EAAAE B R A A B, 7R
T A8 465 R 28 = L BH 2R RFE (Jones et
al., 2013; Spratt et al., 2014; Yang et al., 2025) . {541,
Jb3E Rae bl B A B 1) & R BH 24 A [ Hu e,
It LI NIE 7R 21 74 T 7 ) 22T 0 e L X AR
ACRFAE PT fi 5 b 0 I B2 R O e B B 7K 2 = 1S
H K (Evans et al., 2005; Spratt et al., 2014) .

Kb LRI T 5 R rp ik I, A — e ha Rl
FE N AAAE R B IEARESLIGR, J5E 5 £
g2 H I RTE I & SR X e B R Wl 4
SCTCKE W A B0k F i ) S8 R Bk I A7

1E K fi# % (Jones and Ferguson, 2001; Jones et al.,
2003; Selway, 2014; Selway et al., 2014) . 1t 3
Slave e i 18 42t Ft 1 /)N B9 R i A2 8 e iz i B
TG, K FL AR F R I H R 1 2 A P b W8 A A 1y
FHREIX, Jones 55 (2003) K H RN A SR 1Y
Soma . SRTT, T3 Bettac £ (2023) fE =4k MT Jx
T A5 SR R I Slave b v i 1 A A LA AE Y e 3
gt 0] LU < = BEAI S 7K BB R 3 3 o R SR AR
AT — g a s = A A B A R, R RE
MG A A B AR AR TR, A S R B B K E

(B 13) R FIE /e ) Gawlery o 4738 H 55 by
WA R B R, Maier 55 (2007) HEM
A s 2 4 TR h S S E RS A A
Ji 3L A 45 2R, 1fi Thiel #1 Heinson (2013)
JUIIA g 0 73 R S ) 8 T T e AU R S O B
1ok

4.5 HORE

A0 PR e B R HA B R A AR
X3, 8 R AR 99 HAG BRI o el 2 b 5 A
P8l-2K it BBl i 5t (lithosphere asthenosphere boundary,
LAB) Fe sk Py &M A Pl A0 b 28 1k i el 2 )
(¥ 73 S BRI IR T AR A% e ) AV TR e SO
P 2% () #1415 )Z (Parker and Oldenburg, 1973),
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(a) Model results are shown as one of representative resistivity profiles across the Slave Craton; (b) Using the method of

Rippe et al. (2013), the water content of the central conductor in the Slave Craton is estimated (from Bettac et al., 2023)

HAT AR FE R R B R I 1 S P B
T b 7B R AR K AR Bk K M AZ K (Fischer et al.,
2020; Rychert and Harmon, 2018; Rychert et al.,
20200, LAB K # HIKI# JZ (Forsyth et al., 1998;
Harmon et al., 2020) . i H [ * JZ (Baba et al.,
2006; Key et al., 2013; Naif et al., 2013; Wang et al.,
2020) . AT IX L E R, AATIR I T 2 AT
fetk, H &K (Karato, 2012; Wang et al., 2006)
AN 445l (Yoshino et al., 2006) A& i AAG1R
PN R TR
iy () ER o M R R R KR, BT
LAB I £ 1) I B2 0 55 A & DA™ A K B ek 1R 3 I 4
SR A2 UL 2 i 45 5, B DU EE 870 5 Rk e v A
# LAB FF{E (Hier-Majumder and Courtier, 2011);
M4 XAE K (NAMs)  H IR 7K U T V26 R
It P b 0 PR AR AE B G AL 1 % ) e, HLK
THVRA N M A A R DU S SR (B
B, 2017) KRG (W HO f1 CO,) £ HuiE A
(A AE 22 0 25 PR AIC I AR B2, (k30 20 At ) 7= A
(Kawakatsu et al., 2009), £ & BIE i H 51
X, BER IS AT E 2t m T,
R E T B HoO & S SGINI,  08AA 22 BAR Bk
72 & % R & (Dasgupta et al., 2013; Hirschmann,
2010) . SifréZ5 (2014) WM& T & K4y (CO, f
H,0) B X BUERI T3, Bt — Db 7

FARLALHE LAB A AIAE H.
MT AR 45 R 7R 7 LAB b 77 5 7 Pl il
K EACH F M, TR E R &S B
(Kawakatsu and Utada, 2017) . Naif % (2013) £
Nicaragua i [11] Cocos R 3 35 B 35 i Ha K b R
14 45 i R IAE 45~70 km IR E BB B K& HS
2, MR — 1 BB AR S R A
o kRl DU B 7T 2 K FH i HS TR & B8R
fETFPIR & RAMHEFER, 128 TR
Wi, Xof £ 7K kb pE G e B8 AN 8 R KO [ A 2
IR0, 2% T CO, HITTHR, X 5 BN & 4 ik
15 E W = s (Dasgupta et al., 2013), SEZfx b BIf#
RIER CO, th 2 LLTE LAB Ab 5| &K )4 it
Blatter &% (2022) 4354 547 (3L 08 45 itk 52 56
g, SRMABEEMMAHLE S, LW T Cocos B
F LAB IPE, AH Cocos Bk | F 7 & 5 7 8
5 TP AR 2 R S R R 2 BRI Ry B B R A
B g IE RS SR A R RGUKSE.
W& 73 BRI CO, BRI E Ak 4 (Bl 14),
Z Pt CA LAB B AR AR5 R AR (1) & AR AR R A
e e, R R IR BE (AN E M, Blatter 55
(2022) fEE & 7 /K& = HBR$ Cco, Rl 1,
HEM Cocos B T J7 BB 73 =1 T W ON & SRy
SRS, IRl T AR 73 HOA 1~3 vol.%. M
W24 A LLZE LAB il o RS & 1 K s AK
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Fig. 14 (a) Resistivity structure near the Cocos Plate LAB; (b-d) Effects of temperature, water content, melt fraction, and melt
volatile (H,0O, CO,) content on the resistivity of the mantle (from Blatter et al., 2022)

ILHEWT Cocos #k A T IJ7 & SHE R M HVIEE, "R NERHEZHEMKRE A IR, (R A
55 Cocos B A B 3 2R 4 A5 I 21 (19 M 08 4 A7 5% fil /K BE AR 5%, g LI AT RE A A AH 2 T LA DL

(Mehouachi and Singh, 2018; Wang et al., 2020) . AUFEERZK (Karato et al., 2020; Pearson et al., 2014) .
. _— H A T b e o Iy 7 /K B 32 S A R s R K
46 RTMIBTIES e "

WA SLI &, EAFBRRGH S AR
bR S ER P B B KA . R DI BRI B CRERE A%, 2017), KE &=
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B R MNBILEA (1.0~2.0 wt.%) FHEA T 5
(<0.1 wt.%) ¥JA 1kt (Daiand Karato, 2009; Karato,
2011; Kuvshinov, 2012; Yoshino et al.,, 2008a;
Yoshino and Katsura, 2009) . Huang %5 (2005) B
R TS /K 2GR A MAIEEA I T2, HE
HubE o S S 7K, Dai Al Karato (2009) HIAF
FEA S HE T E KAWL A, Yoshino % (2008b) [ fF
U U H RFDGT 058 R B0 2% R A0 FH 2 RO A s Y
A DA T B3 0 R 5 KBt A R ) b g e 9 iy
FL 3 R T 5 SR

TR LT 2R Oy 1 8 oV A K A T AR
7 A — R e R E RV 2 BT SUAE ] GDS U7
ERIRAG o PR HNE B S Ee b, R T2 R
8 3k 3 7 7K % & . Kelbert 25 (2008) 5]\ 7 —Ff
BT AR 2 e LW s BE 1 = 4k S TR AR R T A EK
Mg = o 3 R, B S VR 2 4 SO LA
BH, FAM M SE (Kuvshinov and Semenov,
2012; Sun et al., 2015) . Li S % (20200 #&H 7 —
FOET A0 =4 GDS i 77v%, #1803 A FH A
SO S R EENE, M T N S R SRR
Al Zhang 55 (2022) FIFH M EZIA PR, X4
BR 127 Aol R R O HEAT B, A SR b g
PP I B KA 0.03 wt.% (K] 15) . Zhang
S (20230 FFH H A B E AN C Wi BT A SO
25 R B A PR . AR, A
BRALG 20 A B KIS R E o A DL R S
MM &5, Khan F1 Shankland (2012) A K 3F
KPP CRHR AR Huwgd K & EE e
T K3 PE AL E8 5 A e A X ALK 7 Munch 55
(2020) | GDS [ i3 3 i) 4 Bk o S R B

S B X F e 8 e Y S KRR b SE
HZR AT B o R A

5 MRS

ACEA F G BT ] FH R SR 3 U5 HL R R
5 v U v T A A S WO N BB A 40 TR M R
KAy (EEH CO, M H,0) /AR, B
M AE— Lo R 1 5 B BN R . BT R A
NN 22 2 2 BEARSEN8 ) RS R i 5 2%, R
R b FE A R R % v T AR B AN [ 4 32 5
Chni& shig Loy . R . ANHBZEERN (R
TR A R PR SRS 5
VERMEHIE SR, BT LIRS R, 448
W)/ A ) F 3 R S A I R BT kL, AT — 2D X
R0 & AT B AR, PR T AT
BRI IAE R A SRt T OCEERIIE S, HEH
ROTIAEAE — 2 JR PR, AHRZ, AT AT DATE b
fithh bR @ i 7 1 -

1) R AR U PR 2R P R0 % 5 ¥ ] 5 3% Y
G5 I GRS DA, TR AN [F) R 7 v A
RE EURE 2 Y0 BB P O bR s 4. i, Kt R
EETX AR E S IR AU, TR IRER
TRHLMEAE s HuRE IR 32 B0 Mg ik 0 7 DA 2544
R, TR A RS R R O 2 in R s i 22 Ak
BEEAR IR S AR 25 R IRE 0 B2 H TSR UL, T e 2 Fb
RARWREIAIE CPIH AR . B2 i sh )
(VB SIS, e Bl M 3R 42 TR b b 1Y) F
SEFA R R 13 ) A RS AR

(2) KRR HERE AR 715 R IR B g T oy

103 E T PP T
1S WMTZ et e
0.08 wit.% UM:.-3_"1:..\-\.-r-‘l"""""""“ g
104 = l“..---"'"".-l.-.ji,/'j *)'Wmﬁji - B
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#40.03 wt.% (5] H Zhang et al., 2022)
Fig. 15 Conductance-depth profile of plausible inverted models derived from various data and inversion schemes. The thick purple

lines denote calculated conductance based on laboratory studies. Water content in the mantle transition zone (MTZ) is

0.03 wt.% (from Zhang et al., 2022)
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e M B SGIRI. JRTT, ARG T AT AT G [ I 2
R BRI AP RR, FREE2HE3E
HYHE R R (Blatter et al., 2022; Cordell
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