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Abstract: Ghosts are a newly discovered category of transient luminescence events (TLEs) occurring in the
middle and upper atmospheres above energetic thunderstorms. Due to the high requirements of optical shooting, the
observation data that can be investigated are very scarce and are all obtained from the ground-based observations at

single station. Based on the ground-based observation of seven ghost events with original optical data, in this paper
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we present a methodology to estimate the altitude of ghosts from single-station observation in conjunction with star-
field background, and determine the altitude range of five ghosts (two of which are at the same place and time) to
be 90 to 100 km. So far, ghost events are known to be accompanied by two different types of TLEs, namely "red
sprite" or "gigantic jet". The accompanying relationship between ghost events and these two TLEs phenomena
shows that the occurrence of ghost events may be closely related to the altitude and the strong electric field and en-
ergy release during the thunderstorm. This paper further examined the atmospheric background conditions (i.e.,
neutral particle density, ion concentration and electron density, etc.) upon the observations of the aforementioned
seven ghost events. The density profile of neutral particles (O, N,, O,), ion (O," and NO") and electron density were
obtained by means of the MSIS-E-90 model and the IRI model. It was found that the mutation of N,, O, and elec-
tron density played a key role in the occurrence of ghosts. These mutations of density may provide necessary medi-
um conditions for the occurrence of ghosts. In this paper, by calculating the diffusivity of ghosts, it is found that the
diffusivity of ghost is much lower than that of streamer discharge, which confirms that ghost emission is a form of
glow discharge. Finally, the characteristics of the parent thunderstorms of ghosts are analyzed, and it is found that
ghosts occur in the phase of weakening convective activity, which implies that the formation of ghost might re-
quire the existence of lightning flashes with relatively high energy release. In the weakening stage of thunderstorm

activity, although the convective activity decreases, the electric field of the thunderstorm cloud top may still be

strong, thus providing the necessary energy conditions for the occurrence of ghost events.
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BEAS K EFAY (transient luminous events, TLEs)
RAEAE R ETHERMESBOENER, HH
RAAESRIN TG B 5 . ARYE GRS TR AR iR
RAGALBEIIAE, HIBF L LR R (red
sprites) « Jt & Chalos) . & A K R Celves) «
WAL (blue jets) FIE KWL (gigantic jets, GJ;
Gordillo-Vazquez and Pérez-Invernén, 2021) . 1989
A, AR R BN AR ' B2 22 W e 44 P R 1 S
Borb, NATTES — ORAE M e 00 I rh A R e = 31 7
TLEs (Franzetal., 1990) . 5K, 4-ER& ik
2 1) B2 AR A SR 2 B I T X B
B 5N KA P T AR AR I H AR R . 2L (K
Rt i WL TLEs Bz —, @5 IEWME =0
M Ccloud-to-ground, CG) N HLAH I, /R B
5k CG N @ #H 9% (Boggs et al., 2016; Fiil-
lekrug et al., 2001; Lu et al., 2013, 2016), =N =
(B PR HEL P2 A2 RS R A SCHR IR (Neubert et al.,
2005) . IXEEHLRIMALEARE R . WK R B
W BERBERADEEE 5HE ETRA 152
100 km Y A 1IN HBAEENAH R (Liu et al., 2015; Lu
etal., 2011; Pasko et al., 2013) .

ZLARE R e B IR A 45 2 95 km JE I,
Fom FE R E R =AM & (Lietal, 2012),

H B K28 50 £ 90 km ( Sentman et al., 1995;
Stenbaek-Nielsen et al., 2010; Wang et al., 2019;
Wescott et al., 2001), I 1c3 7] ik 96 km (Sten-
back-Nielsen et al., 2010) . XF T A [F FE IR 1) 40 (2 8
R, FEIRKE R A W FAE 81.3 £ 88.9 km Z [A]
( Wescott et al., 1998) . X F ) & 1) 0l & & & 18
73.5 % 85.3 km Z [H] (Wescott et al., 2001) . T
ZLENG R ITERIA R RRE R M, Forb ] AR 2 AR
JRH RO WITT IR A HEEE . RAEUR . Ot
Y. MNLIY 25 1% B R BERE R AR I B RBOR 14 55
Yesemaks RIS EENE (Mlynarczyk etal., 2015) .
1T ghost L GOUL I 48040 7 2 B35 9 Lty s 22 L
5, HETAT ghost WLl AN 578 35 1Rk F 460
5. DRI GE T Bk o e 6 X6 e SR B G (A AT N R
# (Stenbaek-Nielsen et al., 2020) . A< A~ 4H 5|
Bk ROULIN S ) T v S R R I R R B, I
AT ghost IR A =i .
£ 2019 4 5 A RAEA NER R HEA, ARF
%257 Hank Schyma Al Paul Smith 7E1C 3545k 52 i (] 5
PN b2 (PR RORGERI, R IR KT R J7
o, RS T LA =R (Lyons, 2022) . iXFlHT
LG I I DLSZ A I G 0 Am 5 10 8 7 BRI O A
%11 (Oxygen in Sprite Tops, ghost), F4& Hi %
ghost A&k 8 1 Jif R 3 2272 2R 1 40'S #'D BT
IR 557.73 nm P BEIAE S, XA E AR
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X R 5 2% (Jehl et al., 2013; Ombolt, 1971;
Stenbaek-Nielsen et al., 2020) . H M\iX — K I L
A& B W B AR 5 2 Ji, TLEs #1 X I 46 583 X 48
ZE s B S (Stenbaek-Nielsen et al., 2020) .
H 3 Passas-Varo &5 (2023) #tF ghost FYEREMIN,
9% BEA 500 nm A1 600 nm BEIS A4, 76 IR
BUKILS ghost 5 FE I W8 55 1 DY Fh = 2 5T TR
T8 (FeD. £ (NiD A% (ND. o F%& (N
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U 2R A A5 D, T AR TAD U 3 P A A I
(Chum et al., 2018; Schunr and Nagy, 2000; 5K 4>
55,2019) . BBk, HEJE D JE B TR AT REAY
FEJR AN 51 50 A, X PP 434 v] Be s me A R k4G
Tk R A () A R AIE G AT T B A A /R
£ R (Wescott et al., 2001; Zabotin and Wright,
2001)+ K HE Jy ¥ £ 4% (Sentman et al., 2003)
DAz P9 DR EL P2 AR R FE R K 345 (Valdivia et
al., 1997) . Qin 5§ (2014) {3 F — 4k %5 &5 T I 4
TR 1S R, 45 SRR &0 i 1% FE A 1
A B TR s g, ks RDERITE Bide
BT AR S, R R R BT R
ANIE) 5 53 AT AT B A 7 ARG R A B AR i AR
Sl sk ) ghost Y6284, 1 LLE 2 ghost 32 %

KA R lE BRSBTS X, C4k
PR DR, KT ghost 7™ A AU AR XS
BRI A AL ) 2 5 EE L

1WA

FUHAT TLEs Y652 W0 — MR FH 28 1 R 1 1
%, FTGEX R gias e, BEgR
AW AR AR, 110 A8 05 AT TS0 1 15 2% 18
W TR HEA B ARG B BT R,
It 5 R 22 TR R 2 S NN B R 4737
AN 5 RAR R AR LA T4 42 TLEs S5 4%
BT ghost FHAF 4R RE LA T 2 (Ao an — 2L
SRARAR 1) TE 26 H T LA LT /T BLZZE R 675 49O,
H AT ic s 2 ghost F A E & AR A . MR 45 1%
gk, ENIMIRCRGE RS EIERT 7
A ghost F 1, A SR X 28 F 4443 Bl ARl o F A4
A~G 4 HIBEAT 404, Ho Events E. F AR —41
ARECHE, A A B 166.5 ms. 2 1 9 H Al Ui & 5
ghost F RIS 224 .

NTET RS, A CHAEaaRREG
(28—l SCA 0 ms, 55 - iUAE N ghost S5 14 H
WA E G E ). Nk, Events A. B. Efl F 1§
ghost #Z 45 B (8] 4 33.3 ms, Events C. D. G HJiZ
LRI A 41.7 ms. WP 1 Bz, Event A s f:Ff GJ
R, GI A& R I I 75 5 2 IO — B 2 2
KZ)70~90 km s E, BEIAHEE T, £K4E
T B 2 TOURN FL 25 )23 2 1) 1) PR s FR SA. [ RmE
LI B A A T R P ) R B AR B
ZXTHLIN EL (CGD TR A, AT 55 F A B
Pl =i _FJs (Krehbiel et al., 2008) . 404
JRA R Z KA CG INHLRRETE R, A ) |
FEAT IR BRI, A 45 (4 DA LRI 5 ¥ TE VA
FBEHA CG NI E, [Ftk Event A A5 4R

1 Ghost FAFAIUNIE S EhE

Table 1 Data information of ghost observations examined in this study

Ff 48 A RIUTCIR R TR BEARIN L2245 B T TE/FPS EikEE
Event A 2021-09-20 02:41:40 18.048°N, 67.113 6°W & 30 Frankie Lucena
Event B 2020-05-25 03:55:19 35.5°N, 105.89°W 34.0804°N, 100.099 6°W 30 Thomas Ashcraft
Event C 2022-04-30 07:33:41 38.275°N, 97.3108°W 38.4786°N, 93.327 1°W 24 Paul Smith
Event D 2019-09-25 02:47:29 35.459°N, 97.374°W 37.7182°N, 97.373 94°W 24 Paul Smith
Event E 2019-05-18 K 05:05 K2 30.94°N, 101.09°W Toik i E 30 Hank Schyma
Event F 2019-05-18 K% 05:05 K2 30.94°N, 101.09°W TeIEHhE 30 Hank Schyma
Event G 2022-05-19 14:35:06 28.55°N, 90.4°E 25.5497°N, 88.1442°E KN B HAY
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G ¥ X N BRA N #L, ot Events Ev F KA
A —BHAE B, BT RA KL ghost B HAK I A A1
TAL, B CAFF AR B BB B, RS
B BEAA R HE I 2 45 B 3R 1 oS,

TLEs#&#ALE

P15 M TLEs (EHBERFR b A # B2 e SCRIAL L
Fig. 1 Angle definition and location of a single station on the
earth
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NSEIRRT TLEs H /& FEAS I € 6r, 1 %6 R R
FH i 2 #1328 43 B4 UFO Analyzer, X — 1. H 7] DA
MR A B2 37 0k BB 19 v T A5 A AT A7 JEAT RS AR
IE R E G R, EEA L@t UFO Analyzer F
el {3 3. A R I, AR, B
HKE. EGMR A T AL A AT A AL
RS Bios o PR R ER EESER B,
T i Mok 2% TR EUR BN IR ST AL A A A

ik TLEs K AAEHAHA N BEIE BT, il
PR FL e AL R o T B A B, AR S AE 7K 1T AN 2
SV T 43 o) a3k AT BRI AN S T = A R EOCR S BE bR
TLEs I B, @il 1 fs, Ry NHEREAE, h oA

BEMEE, dNHHAH TLEs RAEMERS, H
9 TLEs Wi BE, 0 N4A 1% % 3K15 TLEs KX 3 )
048, o AW A5 TLEs 2 8]0 /. H 4%
WALEN (A, ¢))» TLEs BB N (b, 0,). TEA
e, BT SRR B A ).

d=RgX cos™! [cospicosprcos(Ay — Ap) + singgsing,] (1)

OB = (Rg + H) X cosa 2
AB = (Rg + H) X sina 3)
BC = (Rg + H) X sina X tan 0 4)
Rge+h=0B—-BC=(Rg+H)XxXcosa—(Rg+H)X
sina X tan 6 )
o
d
=— 6
0= ©)

h+R
H= kil “Rs (D

. [d d
s1n(R—) X tan (—6) + cos(R—)

E E

I 545 B @A F K J7 A7 fA 4E UFO Ana-
lyzer FitAT B3 n, nILASR B MR RBIIA.
FAHANX (7)) #ESH TLEs MR AE, @it
JIER LATHEAS 3 ghost 1751 L.

A SCR) FH I 5 2R Ak 55 ghost [/ B T3
55 W0 2 2 18] () BR B AE 300~500 km 2 [1], 752
Bk MR . W 2 B, 5T Event A,
TH 5 ghost &K A2 VG [ Jy 88~96 km, #x KfH N
90 km; Event B K45y 90~100 km, #x K{E
995 km; Event C KA G HIN 89~96 km, #H A{H
493 km; Event D &AEVE N 88~94 km, & AMH
991 km; Event G KAEJEHEIN 73~86 km, & AH
29 80 km. Ghost & 4= 5 FEEAE 73~100 km Z [H].

2.2 Ghost RERMKRIMMBEE =&Y

X U2 B % N L fi R TLEs (1) 3 2 8
EIFAZME—FZ, TLEs AR EEZY RS
SR (N FEERP S REE R
W, MbAh, KAE S, VR /R DL R IR
AR [ L i i 2 B R OK S UES FEHLEN . X TLEs
A it #2 B A & 52 (Passas-Varo et al.,
2023; 2875 145, 2009; K&, 2019) . AT K
SIREEXT ghost [R50, AR A MSIS-E-90 15 4!
HHE T ARABEENEET . BAMESBE R KA
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Event A: 2021-09-20 02:41:40
(b) 33.3 ms

96 km
88 km

Event B: 2020-05-25 03:55:19

(C) 0 ms d) 33.3ms

—— 100 km
90 km

Event C: 2022-04-30 07:33:41

(€)0 ms (f) 41.7 ms
96 km
89 km

Event D: 2019-09-25 02:47:29
(g2) 0ms (h) 41.7 ms

94 km
a1 09 Kill

Event E: 2019-05-18 05:05
(1) 0 ms (j)33.3 ms

Event F: 2019-05-18 05:05

(1)33.3 ms

(k) 0 ms

(m) 0 ms

e /3 km

2 Ghost & H Bl TLEs Si441 JR 46 A
Fig. 2 Original image of ghost and associated TLEs
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FE BRI iR BB (URSD L[ &S, BE
Dtk B B 2 AR A S HER AR LR R,

ME 3a FTLAE H, £ 91 km w5, HFdERT
(1% BEAFAE B AR, Hod O N, # O, AR {
JENF A C>B>D>G>A, [ 3b NN, Njfl
OF b= L&A, HANMERNG>C>A>B>
D. Ghost UL 1y B 32 A 7E 88~100 km Z[H],
H 5 BT KA 93 km 52, HAF Event
G RAEWEEA 73~86 km, FHIXHE T HAbFH A,
RN L) N, ER AR K, X R 5 N, A&
B BEXT ghost kA B A B ELEIH,  ghost 1l ¥
PULE Nyv Oy HIT N, 1109 78 A f Y 25 1 IX 3k

f£91 km %, HTE AR THE (O 03)
SR, X EMAE I ERARENBET. O
O . I3 T B 51X He ki 7 R ff T e, A

BT ERE WA T. mRE TR 5 R AT
TLEs. fi# & BE AN B E N I 2 Fhislh ) 5 ad
# ( Gordillo-Vazquez and Pérez-Invernon, 2021) .
O (557.7 nm) W5 K ghd i i 7 O, FF
ik 5 N, (CTTw BIRE K& ™4 (Gordillo-
Vazquez and Pérez-Invernon, 2021; Zhang and Shep-
herd, 1999) . #RJ5, O ('S) L 5 4+ % (1 Alf i 2=
WOk, BRI 2 5% (Parra-Rojas et al.,
2015) . RE A AR HAR A R B 2 (616.8 nm.
630.0 nm), {H 1 T 1X L6 & 5 28 10 58 B AL R
557.7 nm ] 1/1000, [ b AT LA 722 I Ath 4 S5 28
(Kuo et al., 2012) . A] ELHEN ghost I 5 1) & . m
REVR [ 557.7 nm HARS RO, X — KW RO
AT WLE AR 848 (Parra-Rojas et al., 2015) .
0('S) - O('D) +557.7 nm ®)
M (8) HAfLLEH, O('S) # O ('D) Ek
ITIFEBE 557.7 nm %R 5. Ghost I 5 ¥ 47 LI (7]
bF0.5s, X O (D) MEL RS (0.7 s)
%5 (Parra-Rojas et al., 2015) . FLHESE /N S (K AT
REF KA PXTaR B (557.7 nm) AW RN 35 A%
HLEI A PR R AR Rl DRI FRATTHEDN , &3 8 4 B
FEZH O (557.7nm) BRIE S| &R (Huang et al.,
2024) .
Kl 3 BIRAE 91 km = AL, AAAE KEIGERH T
55 i B 1 SR AW R AR G R N AL ks R
FIP 8 X WA K ETEER T (Pasko and Stenbaek-
Nielsen, 2002), X L& ¥ 0] A BT I HL 3%, R
HHEZ R TR, JFS 2 557.7 nm BERDOGY
R T e, WAVHENE LS, KA
Bt (557.7 nm) 7745 52 3K B3GR T (15210,
X R R W Ttk R (Bl 2R R B AT R LA
fedEVE . 76 40tk R A E KWt i b 2 W0 8% 3
ghost L R KB T ghost I & AN AT 58 B A — 2
PE. 72 91 km (IR, BAEE THE (NO'\ 0F)
(545 4k, ghost IR ETTRES TLEs MIRRETER,
Al BRI X IR B2 I H T AR, R AL
FRMEKRBRZ G, £ eI/ g,
8143 O ('S-'D) WL & &y KA, FRATHEN ghost 1)
HILATREE S NO*. O N I JE LA %, 3
5 P AR Ak B K P I 1) 7 FBE 1T R AR ghost R
PR . KR IRT AL 15 3 1 K SR B AE 90 km ik
F 185K, KJEKZIN 0.1 Pa, —RERULAE KSR
FE 4 185 K I H# M & A2 7= 42 O ('S-'D) MIBKIT
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Gradient of background density. (a) Neutral density profiles, including atmospheric constituents (O, N,, O,) from the MSIS-E-

90 model. (b) Charged particle density distribution (N, O, NO") from the IRI model
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ASCIRNTEFC T 75 A A B B ) Py A o i
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al., 2002) . 41l 4a flizR, ghost & 5 5% fE IRGE T,
WG BIRBUE AT R
B 4b 45 i ghost KOGVE BB (RLFEY
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6) x107° m/s, ZRJ51E 5 = WORE /N B LT N E.
XM g SRR T X AR S R N T S
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P HOEE N L Raizer 55 (1998) 18, A1 FlMIkE
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