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Abstract: Geophysical electromagnetic data inversion is a typical underdetermined problem. Due to the limit-
ations of observational data, individual geophysical methods often suffer from significant non-uniqueness and un-
certainty, making it challenging to provide accurate and stable interpretations of subsurface geological structures.
To address this issue, joint inversion techniques have emerged as a key research direction in geophysical explora-
tion. By integrating the advantages of different geophysical methods, joint inversion enhances the resolution and re-
liability of inversion results. In recent years, with the rapid advancement of computational technologies and novel
numerical algorithms, various joint inversion approaches have been proposed and widely applied. These primarily
include empirical coupling methods based on petrophysical properties, structural coupling methods utilizing spatial

correlation constraints, and prior information-constrained methods based on Bayesian theory and fuzzy clustering,
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and so on. The core concept of these methods is to exploit the complementary information from different geophysi-
cal techniques to optimize the joint inversion objective function through petrophysical relationships, spatial gradi-
ent constraints, or probabilistic modeling. This reduces solution non-uniqueness and enhances the characterization
of subsurface geological structures. Joint inversion techniques have demonstrated significant success in applica-
tions such as mineral exploration, energy resource detection, geological mapping, and deep structural studies.

Despite their promising potential, joint inversion techniques still face several challenges in practical applica-
tions. These challenges include the rational construction of relationships between physical fields, the optimization
of regularization strategies, the improvement of computational efficiency, and the handling of complex terrain ef-
fects. Future research in joint inversion will focus on the following aspects: (1) leveraging artificial intelligence and
data-driven methods to learn nonlinear mappings between petrophysical parameters from large-scale training data-
sets, thereby improving inversion speed and accuracy; (2) integrating multi-source data and prior information with-
in a probabilistic inversion framework to provide uncertainty quantification and enhance the reliability of inversion
results; (3) employing multi-resolution optimization strategies, wherein a coarse-scale inversion captures the over-
all structure before progressively refining the model to improve computational efficiency and mitigate local mini-
ma issues; and (4) integrating seismic, gravity, magnetic, and electromagnetic data to enhance inversion robustness,
while incorporating real-time monitoring data to better capture subsurface dynamic processes.

With advancements in high-performance computing, artificial intelligence, and novel geophysical observation
technologies, joint inversion methods are expected to play an increasingly crucial role in resource exploration, sub-
surface structure detection, and geological hazard monitoring, providing higher-resolution and more accurate sub-
surface imaging techniques for Earth science research.

Keywords: joint inversion; electromagnetic exploration; multi-physics coupling; structural coupling; prior
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ZA ARG N, BRA S LB ER AR A SR, A
Pearson fH X REAEYIMESEOCHNME, K = -
AL R H bR R £, SERT A BH AR A A, A
PR ST 8] 55 BOM 2 AH OC REE L) ARG H N . Zhu
S5 (2023) DAARAAFAIBIE N RE TR, Pk
T BT AT SR FE 2 R RS SR N TR  K
WANVE I = 4RGSO vk R S i fE
FH, BH 28 R AL 2R AR A B iR AR, i 58 OB JiE
MRS ZE ) S e S5 R AT A B, A /MG
MR AR SR i 2l L, T DA B — AN R
FRR AL Ze A5 250 b BA AL A AL, & i1
R PR AN AR A A A 28y PR e i 45 SRAE 1 A H A
i, TG SV e S A M A R S e, A M
WA F AR AR, AT R0R 5 7 A 1A B
(E3) .

B —5 ¥ 2 S HUE DT VR AR R Y B PR A
A EENH. WA REA R S B HZE (Zhu et
al., 2023), W] LLA &> 2 i 1) L, Rk G B —
AU LRI SR R AN, %7
W 7R P20 PR — R A T () 2 B e S (Ui Rk
N5 LR, B R 2L AR, 24
G BRI SRAEAE, JUH S R ERE A Mo
e (1 Cole-Cole £ 78), 75 U v] g 3 350 7+
I, R, 20 BE R B R
JCH R AE B A 75 BAY AR ZE 5 R, A AR 2
B2 (A4S XT3 1% 7 VR & T RS 4r 4k B A
PO, W EN R SR G FiEsE, 2023) K&
TKENAZE R E, WEH T AR5, #il
FE R B % A )N R 2 S 30R) P .

14 ETHEMBENZSHKRERE

BT S5 HREE 1 2 S80GSR TT VR R B
[P ELJE T (R AR5 4 (25t iR ED BAF
FE—80tE, W TBRA . Bl SR a5 RYR
HOERYDEL 574 45 44 5. Haber F1 Oldenburg (1997)
HUGRH T AR S AR, TR R
M H T LR FE IS H B3, LB
i Bk A B I I
FI AT T2 A S AR & 2O T 1A 28 X2
Gramian 2) ¥l Pearson AH G142 4. 28 X BhE 2
W7 iR — M T B A SO A [ M ER Y 2 2 i 25
R R & 2R 798 BAROR A, A2 SOB FE R B0 % €
SRR SHOBEFE R AR, XA AR & S
W, ANESEB R RS A2, s>
% Ml I 42 5 S 45 SR I W] SE M. Gallardo F1 Meju
(2003) T NSE XA FEE oA A s B HL BEL R A
PR LA AR &, NI SR BY T 3R 45 — 2K
AR R 5 OB B & ST T VR R B &
FE & AN [F] S A B8040 M 45 B e, BdEE ).
Wik MR PR A B 45 22 b BR 9 B 500 1)
BE& [ i (Fregoso and Gallardo, 2009; Gallardo and
Meju, 2004; Gross, 2019; Joulidehsar et al., 2018; 2=
i #R &5, 2015; 52 #x 5, 2013; Penta de Peppo et al.,
2024; Wu et al., 2020, 2022; Zhang et al., 2019; Zhou
etal,2015) . mRMFKEL (2016) FEHLFRER 5
B PR A S o, R A8 OB FE A B A AR B
PR S S A AR, R 7T S5 iR
Hr A ARG 2. 58 OB B bR 80R] LA IR D9 Y A
RUBR I ORI SRR, B
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Kl (518 Zhuetal., 2023)
Fig. 3 Imaging results of separate and joint inversion of synthetic DC resistivity and time-domain induced polarization data. (a), (c)

show the separate inversions; (b) and (d) show the joint inversions; Figs. a, b are vertical slice of the resistivity and the charge-

ability at x=0 m; Figs. c, d are plane view at z=8 m. The third column shows the cross-gradient (from Zhu et al., 2023)

H(x,y,2) = Vm(x, y, 2) X Viny(x, y, 2) (7N

b, m Mmg 5y 5PV H CEean fa fH 2
H5EE) .

A R PE BB BRI R O 7 T R FH 28 SO S R
AN R FA, B HEHR LG AN WS H0T
A SRR R AR, AN I B S 5 i 2 Hh S IR 45
R —E (B 4) 28 OB 2 R A I T8 7 1
FRORTE B w5 ST 45 SR ] S P AT A 2 7 T B
SRS, H A AR M DL AL B AT A ol 2 T 5 45 4
THERL A 5 DA SO0 B o 2R i S5 R R (Grross,
2019; Joulidehsar et al., 2018; ¥ #x %%, 2013) . £ 5L
bR, 7 AR B AR BRI H AR LR & 75 R ix
HER, PAFR O RAEAE XA 2 AR A Sl A 3

% T Gramian 2) W[ 56 & 2 @ T 50 A

Gramian H7 B R R AE A ) 22 502 [R] (1) 2 M AH
SEILZ) R . Zhdanov 55 (2012) & —Fi T
Gramian £ (1)) & RE DTS, I AR 2
e 1] Gramian 258, BCA LR IR KRR N 245
RS H0AH B (1) Gramian R 4T 51 20, 25 FE AR 2=
&) BRI p HITEECN
PG = (P, P)gn = G(m',m?, -, m"™' p) (8)
Bl Sk BAN R 2 B0 1) Gramian %5 B 1) 4741 20, 243t
1T Gramian 2RI, A5 N A7 T, L
Gramian FFEI17 51 2038 A
ITpliZ: = (Tp, Tp)gn = G(Tm', Tm?,---, Tm""", Tp)
)
HARKYL, Gramian 250 I 5 /MU T 225
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K4 HoRBEEIRRES R, () SRIURERBZRER, (b) SRFURAEERA, (¢ Sk Hh r g 5 I8 W 5 1 s FE
R, (d) PAPHEERSHLRE (seismic while drilling, SWD) JeiHE 3G HIBT DIPE MR, (o) 28 XHH 1% 523k
SRR, (f) 22 XHARE RS 5 SRS TR R A SR 2 )t e B R TR FE R R () 45 4. “RMS” FnEdE

G5R (5] H Wuetal., 2020)
Fig. 4

Inversions of block anomalous body models. (a) Resistivity model; (b) Velocity model; (c) Resistivity models recovered by

separate magnetotelluric inversions; (d) Velocity model obtained by separate seismic while drilling (SWD) inversions; (e)
Resistivity model obtained by cross-gradient imaging; (f) Velocity models obtained by cross-gradient imaging. The black lines
outline the structure of resistivity or velocity models, and "RMS" indicates the data fitting result (from Wu et al., 2020)

B £ 1) Gramian V2 R SR S I, I A 45455 8 2 0B 15
) B R FEAT, AT ERAE T AN [ 70 BE & 14 1] ) 45
4 #8 5< 4 (Jorgensen and Zhdanov, 2019; Tu and
Zhdanov, 2021) . ££ Kb B8R AN ) B IR A
™, Gramian 2500 U1 S 82 R AE — €0
BN, fRm it s BRI A 2, IR 20R
EPMERE G VERE (B5) . FESERRRH A, Gramian
L) RCH 5 HAM R L0 Cang 31 s HmD - B &8
H, BAE— B S 4 . il dn, 722 3R R
RGBSR B A S R, J8d 5] N Gramian 29 501
TETTRR AT, ] DAAG R0 85 55 R e BEL 22 1) 40 A1 R
FIEGHPEEN, SCEMERR (754,
2021; BEICEE, 2023) | PRBESF (2023) 7E Gramian
IR A b 5] ANANSE LR CARR fl B3 25 v
B, B OR B 08 45 SR A & S Bl S 1 400 2 S B 1tk
GG B G LT, A e A R RO sk
MBS HIAERA R R, PP R

TiVESE I Z 3N A 2 AL PR . Gramian 2 5 B
SRR SIS B EAIS,  AEGT B B 14 SR IAS 1B
I 2t AIC. IX B A AR SEBR S A Y, Gramian
LR ] B o 78 o AL ST RS Bk IR
SRR BIRE R (G ECEE, 2023) .

% T Peason fH G 14 £ 5 (Pearson correlation
constraint, PCC) RS i = 22 F| H Pearson #H
K AFCRFIBR L) A [F R BRI S5 2 I IR R,
DL D B ) 22 . KRS (2018) e & T
J53 38 Pearson AH <4 2 5 (local Pearson correlation
constraint, LPCC) ¥ HKA [ i 5 v, i B 4>
Je F8 DX AR Y 2 B B A 2 MEAH SRR, 0 R AR Y
SRR RPE L, SCIER G SO, IX PR VEAE
o BRA B B SRR AR 2] 7T A (Liv
et al., 2022; J FF g 2%, 2023; Fh YR, 2019; Zhang S
etal., 2024) .

XFHAER S E 0 m, « my, Pearson FH% R
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Fig. 5 Vertical sections of the synthetic model. (a) and (b) show true anomalous density and resistivity models; (c) and (d) show the

separate inversion results of density and resistivity; (¢) and (f) show the joint inversion results of density and resistivity mod-

els (from Jorgensen and Zhdanov, 2019)

WHERN:
M . .
Z(ma — iy ) (b — i)
Pec(mymy) = = (10)
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8 DX A X A5 Y 2 H it N Pearson AH IS ZIBR, A LA
A A A 2 P ER ) BELECR S S, AT o3
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BEER I, BCA IO 7 P 3 A HER 1115 31 W
.

SENIRR A B RO AE AL PR 2 S s I B
MRFR . 1% 5 ik I A2 B . Gramian BY Pear-
son AHGPELI I, BEME7E A RV 3817 2 18] DR KR 45 4
—3, mEHRERNELYERR (Gallardo and
Meju, 2003) . EFFAEH TR RAES B X, 40
SRy A K LA I, RERE A RN S AR A I . SR
1M, ZEHR G A SO BT A B, PR R
1 S AR PR AL S I LRI Clnse Bk
BRI D, A5 I [R] A2 2% BE S8 N 30%~50% (82 &k 5%,
2013) . B4k, 1R{EMEE (SNR<10 dB) 154U T,
SEMLIR AT RER R, PR R B (Gross, 2019;
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Fig. 6 Diagram for calculating Pearson correlation coefficients. (a) and (b) show 2D resistivity and magnetization models; (c), (d), ()
and (f) show the rearranged 1D array for resistivity and magnetization for the entire model and zone 1, 2, and 3, respectively
(from Liu et al., 2022)
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WAL /(A m™)
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[ t eee—

K7 WS F R AT 2 0 5000 1) S L B 3R B AR e Sl A S, Ca-e) ANAN [ 7 v WL 380 ) B S L BEL 2R B AR s (d-0) iRk
PRl s (g-i) X XBEERLS i (j-1) 8x8x6 F ik Pearson £ L& i ; (m-o0) 8x8x10 F Ik Pearson 4
RS, B e fuiv 1. o RIBREARE THEREYI A PR EILA (51H Liuetal., 2022)

Fig. 7 True resistivity model and inversion results of AEM and AirMag data. (a), (b) and (c) are true resistivity model observed from
different directions; (d), (e) and (f) are AirMag inversion results; (g), (h) and (i) are cross-gradient joint inversion results; (j),
(k) and (1) are joint inversion results with 8 x 8 x6 subdomain for Pearson correlation constraint; (m), (n) and (o) are joint
inversion results with 8 x 8 x10 subdomain for Pearson correlation constraint. The black lines in Figs. c, f, i, 1, o mark the

boundary of the anomalous body (from Liu et al., 2022)

Wu et al.,, 2022) . %752 B T 8 4 pi# i
(S ist, kAR WTE  (Pearson #H 5% & %>0.8; Liu
etal, 2022) FIZ 1L A (Perez-Flores et al., 2024;
Kl 7, Bl ZWE R A (Molodtsov et al.,
2024) .
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AR T I T ARRE () T AT L. BRI (B SR SR Rk e 8
FE AV BAE SRR B SO b, DR % 3 5 2% A
AR BEE S (it T S 1) S s 25 SR
DU BB ST A 3 A 2P ) R AL 1 5 K
() TR i 5 30 3 2 A 1R Se I A5 2 AU 24
LT AR S HOAG,  E E VT AL SOE AN e M
{REfR 2 LU U 000 A S 5615 JE RS 0K 2 TR e
71 CERIBEE, 2022) .18 DUAH OB AESE S, S
U0 W 2% FE P(m)d) RAE B0 s a 26440 T £k
B ZE m FINEE, B
Py -
Hrb, Pdm) /%5 5€ d I m ISR RS, FRoRTES
SERR m WG ORI EHE g
Pm) RSN REL, PN EE d
LA EE . CE L BRY BRI BRI, DU
T2 B TG Z S R BE I & (A
% (transverse isotropy with a vertical axis of symme-

try, VID SR Z BRI A S LS B g A S

(11)

Crepaldi et al., 2024; de Figueiredo et al., 2018; {2 ¥k
F45.2014; Yao et al., 2023) . iXEEHF 5 R 1 DL
SR & S v AE B0 SRR BRI AR E ME . PUMRRE T B
JANVE S B AR A R B T THI AR A 34 DLt $8p
KA S R BEAE TSR B 2 500 5 B e 2 % FE iR
B, 4G 4 RO BEE DL R K AT T
(FE2%5, 2018) . Blatter % (2019) 7EHHATHi &
VEIT IR K B K E AR Bt Fe R R & SOl B L)
WO T H P FR R N X A, I AR T SIS A
ST E . Yao 25 (2023) 3T DU Jif HE 42 52
K e B A B2 IR ( geomagnetic depth sound-
ing, GDS) #dfs AR 4t DU K& S, 5 5l
HAHEL, WG I E TP B T AN E I
(B 8) . DUM- IR & S B AR 2 — Ao K LR,
HedmisE TR BRIz, 2P
AN EMEREACFERORMES,  LLASH Se 505 BT
JRFRME (GR25E, 2018; EHRHSE, 2014) .

RO I BRI T4 —Fh FH T8 R AR 2 A 1)
FRALYE, T2 MRS P 2% R 1 50 AT DR ) 28 1)

fib b BR ) B HOHE R K & O (Blatter et al,, 2019;  J7iE. fEHWERYIEREI PR, ORI C ME RS (fuzzy
(@) )
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K8  (a) Kuvshinov % (2021) 432[ 70 2 IR S 2R, (b) T SLA R A A R LR AR ;. (o) R BH
H (solar quiet, Sq) Global-to-local ¥ ¥ B i+ H 1952, MmN ; (d) TEIL3NRER A (disturbance storm time,
Dst) QURN. by d FHREBRRMEBIEAFEE. (o) KMbEEE. (O KMEEHH. (g PLzhRER ) S i
SR (b WA N Z B SR FMER 0. RO O R R RBE MBS, H&FR iR, 46
SAAFORE R PERA, e RO RIRN BT 90% FIfEXIE (51 H Yao etal., 2023)

Fig. 8 (a) A layered Earth conductivity model derived by Kuvshinov et al. (2021) ; (b) Synthetic MT apparent resistivity and phases;

(c) Real and imaginary responses calculated by the Global-to-local conversion function of Solar quiet (Sq) ; (d) Satellite dis-
turbance storm time (Dst) Q-response. The posterior probability distributions of the layer conductivities for (¢) MT-only, (f)
Sq-only, (g) Dst-only, and (h) joint inversions. The grey lines in Figs. b, d denote the predicted responses for 50 randomly
selected conductivity models of the joint posterior model distribution. The white lines denote the true model, while the red
solid lines indicate the posterior median model. The left and right dashed red lines indicate 90 per cent credible interval (from
Yao et al., 2023)
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C-means, FCM) & F T8 3 R A1 B A 5] 25 PR X
VITERFEBEAT 20 FEFNLI R, T o503 S J6 45 SR ]
S TS ATFKRE F, 20200 . Sun A1 Li (2011)
PEH THEM C HMERBEE. B2 MAEAMEEE
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Hrph, NABMBITTANE, CRHRENE, miz
B ANBARIL v NE EDNRET L, SH g RN
BOWIALSH. B C ERBEZ A TR 5 E
W& SO, B 7R S I R R AR K AR A
(Carter-McAuslan et al., 2015; Leliévre et al., 2012) .
Sun 1 Li (2016) K 2 Foa A Y B Hs AL v 2 Bk

(12)

AN RN SRR, S B i 5] 3 B S E
(guided fuzzy C-means, GFCM) %K, BtH &xiH

ZME A RS B A SR B BERG 5R T 45 K AH
M, M3 S T AR SRME,  EA A R A
J& TS AU )RR AR 4F A Hh T H S L. B0 C 1)
1B RS FEEAE A T T F BEL R R L Bk ) P A T
BB, W T NE GBS BAERA R, 1T
A Rk > Sk B b R 2 @ M (Shi and Wang,
2024; Yang et al., 2021; Zhang R et al., 2024) . Zhang
R &5 (2024) HOFT i B &N S A Y BAE E
(5] AR B B R AR IR T 1%, FROY XG-
FCM LY S 712 2T EIR I T ARG 77 R BRI,
ARG TR ARG, RARMSERE
F, WSS SRNBEEER, B30
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Fig. 9

MT Inversions for different constrained methods. (a) True model; (b) Smoothly-constrained inversion; (c) GFCM-constrained

inversion with incomplete rock physics information (GFCM_IC); (d) GFCM-constrained inversion with complete rock physics
information (GFCM_C); (e) XG-FCM-constrained inversion performed under an initial model with a resistivity value of 100
Q-m; (f) XG-FCM-constrained inversion performed under an initial model with a resistivity value of 101.5 Q-m (from Zhang

Retal, 2024)
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P BCHE o O R e 2, PRI T LA 53 2 b S 454
IR, I H 25 22 (A AR A A 22 R,
TR B S L 2 R 2 2 B 521 (Colombo and
Rovetta, 2018) .

BT RB0AE B 5 S BRSO T IETE AN € T
AR EHE B A T B R A @R UL HE
28, FIH 32 AT PEAS BB B (S BE, AT SE
PG ASH & RS B (Yao et al., 2023) . b4,
Z R R G HR . AL, A AR SR
FE, BERSGEMATEEM (Blatter et al., 2019) .
SR, AR E R R E R S, MCMC RAEEL
7 o DLt sz Y P ST ) S S5 38 (4] G e 4 A
IR GIFER 0 5 6%; Yao etal., 2023) . b4k, 77
XTSI AE AR E s, A I R A A R 22
AR S BURESE R AR G0t 25 BUSL . (Blatter et
al.,, 2019) . 1ZJ7vkT iz & F T ks B v 2 %,
R B S 20 A CAfE 1E+0.3 S/mD - Al i
FLBRE /i, RN E A T 2 SRR RS, FR
S TE b TR Y 5 b kA B (P F 29 R (Sun
and Li, 2016) .
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21 FRGE
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SEIRAE RN o — REE ROE WA, DLGE IO
SRR N, Sedh T Hh R REMEYIGHIA, AL
FH F T B0 o B s A5 Y 3R AT SE T Lines 58 (1988)
e B ATICE S, IR T I e S 7 vk
ST MR S E O B CA S AR AT RN
TEPTH SR, 0BG S 1) & 2 2 (R AN 75 2 5
WA SEIR AL, 5225 55531 Dell'Aversana (2001)
SR P B G IS 188 SR S 0T 3 DR R Bl 0 IV~ 1 > I i
RHIHLRE « K H R RN B O AT T S T R
FEAE T RA CTREBA”, sE Il R — AN A
HhERY)FEAAY. Wang 25 (2014) F) 7 A [ I8
RS Rk G AL hE M E ) S R AR, A5 E
Mol v hir 8 A P ) = 4R R A . A R A AR
PG S s BRI, PSS 45
RATREATRE, PR LR AR,

22 WERE
Rt 2 ST 7 P B AT 1 S

FE A A5 B R SCHLE B HAN. B A e i i sh A
SAFAIL,  ASTAS [F) A 35 37 1) e e 45 SRAH L%, DA
LB Ee 3, H T R R b o S5 RN s S
AR FE. Lines 55 (1988) T YK H IR S Ay 7]
S, I i R SR BT A R] A R AN R
5 T80 B J U8 v e /b BT A L IR BRI ML R I 4

(2011 ¥4 T D014 PR AR 8 5 N DR P, A 5 040
MIC& B, JF A B & BT VA E 1R WAL 2
4. Paasche 55 (2012) ¥ & 73T C¥MERE S
AL 235 B A N 508 R S T8 ARV 1) X I [ e i 77 %
SR 43 A T R — B A X ) E i P R R T
Takam-Takougang 55 (2015) F| FH ¥ [7] S 38 77 7 M
i 72 M OK R R B b S T S T BT 2R R AR AR

(2015) $EH T BN AL — 4t 1F s BRI DL
JRIE X ks AN AE SR 2 5 1A 24 TR 1) () 20 e e B
SIS 25 FER W [R] 45 s s mT DA S A [ 47 35 45 ) (AR
B R, BRAT 2 MMM, Syracuse 55

(2016) fEHEAT H R A E JJ A S I A 7 AN ]
BARRR RYE 2 S, AERARR I8 345 L 5
P FH AL 28 4% FR IS 1] 2 BT A5 B8 v 20 % 236 11 ok A
. Gongalves Fll Leite (2019) $2H T —M4EF X &
i M 5 445 49 (1) 28 I ML RE S S R B ) B W ) s v
V. ERVESE (2021) SEEL T MRG0 AR B A
N2 H A 1 W ) e . P [R) e v v T 7 i R R
AR AL, K IH REAS AT 2 AT 1 S RUR
HZ 77 25 BB MO T 455 2 v () 0 . v I) B s H
AR IS RO I FEREA,  HO s B A L
SEIA R TS

3 RRKJETTH

W& HE TSR BOR AT S HURE AR R
HbER ) PR LAV SO 0T ) R AR A DL R
JUASJ5 T

31 ETREFINKARE

IRBE 7 S BR NG RO R 1R g, d
IR 2 5] 5 20 B 2 (RIS 6 22, AT LA
ITRRIEIE B . G RIEFE L, H AT S AE B R
BT HES T2 M. Puzyrev (2019) #&H 17—
Fh I T3 AR 40 O 2% 1 B0 S v, i I RTR
FERRLE &%, STBL T MR R BE 2R 40 A PR T
M. Asif 55 (2023) g T — DMHEERY B L R
T PR BH ZE BB R o, DR BE 2 S AR FLRE I )
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PR HE T hrue R A, (R T HER IR T kK
J&. Moghadas (2020) FF Kk T —Fh— 4R 2 2 R
BTV, AR A 2 0 2% Kb B e T SN B, T
R 7 A% 40 S 7 v R R R 2R AT EME— PR )L Yu
2 (2024) T bt Feh s e I H B B I
JE 2 5 R T, SR AR I 24 S T 6 B 2
HhJZ G5 R B UL BEAh, Li%E (2023) 5IANT
—Ffr [ B R R BN R B 2 2] Ui, T = 4k
R, BT R S R A A AT S, X e
WECFRB, VR 2 ) 7E H RV S 38 1R 8L P T 5%

Ve, HEBN T FHAEBCA S U TH A St AL Liu 1
Liu (1998) & 7 —FEET N THEM L (artifi-
cial neural network, ANN) H i& W It 5 Th 8 1) B 45
UKEN T, AN AR 0 48 H R B R AL el f 3
K A B e FR SR AR I B S 5 S0 R E
F-. Colombo 5 (20200 FF & T —Fs 438 K 3] 1)
SRR 5 H T 40000 KBl (1 VR P 5 2T IR R 9K T
REAHZE A R A TARRAE. 1207 A0 O AR
JE EFIIRMES, #G T ZAWRAL, B EUR
SR — A [F) B 36 2 A 0L 5 2% At FH R JBE 27 ) N 4% 5
A E ALY, Hu 55 (2022) PR T —MNRE
S )R A SR AE S, IZHELE B TR IR FE AN A
M 4% (deep neural network, DNN) 5 4% 4 ff) 537
WITAERAL A, IR T AT BA RO g Rt
753t Wang Y 5 (2023) {IEBH 1R 22 2] VR AE
A S . AR IE AL AN H A e B e XS 7 T 5%
W R IE AT AE B A 3 TR B 2 STAE SR S B
A ROE TN IR 7 HR 2 o0 s B AR 45

3.2 FHEM SN R R

AT 1 5 6 B T B A B A SR I T AE B
[T @y e e B BV NS A ERS L it
SEIRAN € B Ak, VUM T SO e 45 & 2 W HE Y,
AR S, DA A a8y, et
FEERE I OIS L. AE Bk B A0, kT DL iy AR
A A I 38 Ak F R 2P B Bt (Yao et al., 2023) .
Kim &F (2016) #&H 17 —FA 20 DUt B 7% T
TR AT SN 2 WS o B30 s TR BB & S B i T VAR
1LY B AR e Y e 3R 5 2 5 2 BOAN I e PEAS T A
i, nDARAETTSEMAL AL IR . Peng 55 (2023)
A58 A Do B 7 2 00) g A% LR BN 1R AT S, Jd e gk
NS 23 R0 R 22 AU THABE B AN 1 R R 22 5
Wi, R S PER. Deng 25 (2023) #2H THET
FREE L /R ] REE SRR T, B B

JE SR A AT RO SRR A, BLS] SRR A )
MR DX, A T AR VR SR i S R 2 T
BEAT TN, %7592 W 78 M S I8 7 VR A B B v S T
RO, AR 7 SRR, X1 5 (2024) TR T
HHTHEZR T R IR R 2 500 2 IR AR IR & S i,
38 3 F4 5 AR R 22 B E AR R TR A R TR S AU
TR LE. SARE, SEIfE B R Eh ook A A
RER & S 2 e, D5 BB 0 R

33 ZREBKERE

% RUPRE S 8 SR W T8 et S 70 R RUBE 1 AH g S T8
PR NRE, TURERKTER, K&
SRR E . H AT 2 RUEE [ 2 9 Fi—H0d S . B
MMESE (20200 $2HHHET 2 ROBEPRIE UL B FR 1 B
B R O X Rl R AR 2 R R ik
RIEFEA, BT 35 AR R 8 SR B T DA 25 i sk
D> IFHTUEAE RS (. Pang 45 (2022) 2T —F
SYEHBAR 2 R RE T, %R = 4E B
/N7 45 AN FEL BH 28 A5 R AR SR /N S 4UE B TR/
BEIBR M, AT S AR A s /N Ik U fde A 46 38 %
[B]45%. Li A1 Ben-Zion (2024) Ffk&k T 3T 2 RE#H
FERRI S SRk, AT 3AS 1) 2 ROBE & FEARL A mT
THEWTRIRREE . SIS T E S, DL
XoF T 2 AN 1 I R A A

W2 RIEERIETTESBE IR G, o
DASE IR BN A AN [F) ROBEZDBR, Tl 3R 45 55 w]
SERRE RO R AR R AT, anEhi
FE X BT R AR X, 2 RS [ A% d it
BRI BB v AT R B B 5 A AT R o
BHE) SR SOE RS B A R fsd i 51N
ARSI R, AT DA ROZR A LS I 7 T 0 W G
BORS FE RO, AT HE 150 S 78 485 SR W SO ARG
CENMOMESE, 20200 . HARGIERI 2 REEBA IRIELE
ANEIHBE 21t R R B3, Homid B A 2R
HhERY)ERH R 5 2 RO B SR R T S 2
R MR AER . AL G 8 — R I 5 3% R 5
M /MEFZ M, 45 B R b R S T DRI A AR
N 2 SRR HEME— 1, 2 R B
RIS AR FRERT S, BRI S,
WERA T RRNEE R SCRATEZRBE, 1998) .
TR0k, A REEL R XM ERE. A
AL R EF BB T S50 — 80, e Z 24h
AR, RS E . B A R RE
FEMVKE T I S, AR B S 35 ] PRI BB
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S TIIE 30% UL (EBUCEE, 20205 5K
&, 2019) CWFREOR, RS MR SR RS R
TRAE A SR BUA R B XOR]H2 i A 1 g 23 9%
JEFHAE TR B AR, K U w4 Y P 1
B EAMEE 5 T SIRFEVE R, A S 2 R R
B 40%~50% (5K 154, 2023) . AR, ZRFE
KA ST T I S B B ik, 4910 a1 58 SOB: 2 T 5 ) 12
LR TP E BB BRIP4, JESS MG R
TE WA T V0 ST T e d Cok A 5%, 2023) .
SLISIOUER B, BRE ROEAE S L SR Y 5 A%
X35 4] B BEL Al R4 22 Bb B0 — e AR 4 25%,  HL
W2 SHEEBOR T B R RS S5 MRHE (5K
A, 2019 . N LRRERVE 5% 507 LA G
522 ]RORE B A I 38 R Rl S s 20 ) 5 A B R R R
JFE IS5 . Wang K 25 (2023) #HT —FhT
BEE 22 2 R RFE @l & M 4% (feature fusion
network, MFF Net), | F #i 28 [0 4% [ £ 4 4 26 1
PLARE A B B AR R E, @ TEA FRFE R
P BRI A TR S, SR R R SR

3.4 BESBIRERS SCHTEN

% RS Hh IR A BRI 4 R S M I R SR
AR PR RN B R AR TR H A AR R L B
FH . HhER P B e 8 T I A Bk 8 2 — =2 n o] A AR A
K F AN R EAR IR ANAN [ 43 230 1) 2 A Hd, ot
B By W) WS, FFHERSE U TR
JEME. AT fRPOX R, R REATRA T 2
B EE R e o, BT, mtERETE
HREE % 2] 23 R . Del Razo Gonzalez fll Yut-
sis (2023) #2147 — MR T 5 ) RI#E ) #4E 1¥ 3D
oA ST, SRR AT AR T O
LA BHEE R IR, %7k R E R T
], JCHSEH T AR5 R A,
RE % [F) B AL 3R B A F AR VR 2 BLS (S B
Alyaev fl Elsheikh (2021) #2HH T —Fh 2 BT R
SOETTE, FETIRFEAN A2 5L T S AS R 28 2
BRA BRI B 1 Se i 2 e v, B T ARG E
s B, BRI A S 2 N R VR AT S R 1
FIFIN. Liu 25 (2023) FFRMAIER(E B AL W 45 45
B, g MR RN L H R A, R 2 A R AR A
Pewm T CO BHAF MM BIRE BE, FHAMEN THA
AN B P B IR D, S i IR
IS O, BEEE R 5N BIBA i
A CLSEEL sh A RE CnkiiGsh. R RTIE S

HEAT L B Blewitt 58 (2006) i FH 42 EKGE A1 &
4t GPS U4 i 78 Hb % 1) BRIV 7). Dong 55
(2011) A RS SFLAETIE (SAR) 3EEEL
Wi, DARAE SR 2B B R R EAE S, B
TEPANEI ., o FIPAL AR S E A Wang 25 (2018)
R FE K b 0 Rt R 08 T B (I A B, T
i FE HA (8] M2 () B o A AR 2 e AL Si SR
(2024) Gl N T HLFE S A BB A (SeisCLIP),
TETI S A TR b 6 L2 3T, 20 B H i 38 3 1Y) 22 A
ASHHE S LI o3 A A JR AR R I AR ke
A T AT R G I AR e . R
R 5 % N 1 PO B: N4 R N e o3
ARSCHE. X LR FL R 7~ T ] sd i 22 45 25 0 A A
BOAR, FEA [T A $2 1 b BRI B 2 386 1R G Rk
R, R R TE SN AN RS B AR, RS
Sia ZMEHRRMY, PR TE R B T S5 R RAE.

35 HAHEHERE

B BN RS OB E A S (n
FPHR . FLBRE . MR AIsEZR, B4Rt
MRS AT EEME. filan, BRGEORRi (IP) #dl 50K
NBHURE, WRIEE G A AR ) 250 240
i % (Romhild et al., 2024); I H 4 5 Ho 75 %
P PO 7] S R 0% S B 2 S8 CAnFLIREE . 1N
FED) MIBJE N, Gk 2 R AR E R
20%~40% (Shahin et al., 2022) . 7E4& 2R HUK E
WS4, “H-Hb-FL7 BA TR 5 RO
BRI LI T RN () = 4R A e i (s
A, 20200 fEMAURIT KA, WAR-BRRE
S I B A S R AR MR A,
ESHA E PEFEK 50% LLE (Jhaetal., 2015) .
Ub Ak, At - I D B BE A SO AR AT A 43
PRt | 30% UL b, IR iE it 2 A Al A PR
RIS, 2024) | IXEEREGIFR, Hh
BIGEEA SO HAR BE 0 T o T T AN DL IR
PRALTEAIREM . SEAR AN Bl AR S

zx b, BRI R AZ O ILAAE T 7850 )
FAFE RS GE H FR ) S o> PR e, S5 A i &
SR A R )T, RE RTINS R
TR Z et [FR, FErhsnilifes A s
ORI E AR, iR RIS 5 A2
SEREDT. SRR Z MELI AL R RE VL IR
T, APPSR ENEEIN . TR IE B S SRR
SCWEI, RTRSE B IR AR . MR o I L R T
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TR AT AURSHE SR, HEZHO TR I IS 2 A AT 1]
By 25 SN I 3 5

4 4

HhERY) P P s A By B AT RS AR ME— 4k, L
ST BRI K B Jsk 25 RAEAE B AT BOR BRI »
T AL b P IR 75 5K LR S L e ER
P BRSO PR Rt R R RS ESR B 1A AL
F-Be. H TR TR, AR B ER Y B 00 3R
HOVEE MR BUREEAR, 2 RO s f A
SERET SIS B R, B IEAN, RIS T 5
IR AR IR BRI & S 5 v H T AR AR G
B AERRAE T, BT R e WAL
P PR R Sele s B AL IE AL R AN &
AR, TSRS Bl A F AR Rk
ST b . B PR RE TSR TR RESL
RIGEL, KRG BCR REZNEME . &
JE5 2L DSR2 R SRS AT 5T
sk, 1A E BN SERHNT R 2 R T R R L
b, RS RBEL RS ZUE S, ROUR
— PRI RERYE, A5 BN IR T T 22 [ PRI
FERIRBERIAR. WA & S8 5 ¥ B A B 3t 20 g4
TR N B E I ZIERE 77, 5 et B BRI
LS T FEE.
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