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地球物理电磁联合反演研究进展与展望
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摘要：地球物理电磁数据反演是典型的欠定问题，融合多种地球物理信息进行联合反演是减少多解性、提高地质结构解

释准确性和可靠性的重要方法. 近年来，随着计算技术的快速发展和新数值算法的涌现，多种联合反演方法被提出并得到了

广泛的应用，主要包括：基于岩石物理不同属性经验函数耦合方法、基于空间结构相关性的等结构耦合方法、使用贝叶斯理

论和模糊聚类思想的先验知识和特定的约束条件整合方法等. 这些方法通过融合不同物理场的探测优势，提高反演精度并减

少了非唯一性问题，对于矿产勘查、地质填图和深部构造等研究具有重要意义. 然而，联合反演技术的发展也面临着一些挑

战. 例如，如何有效地构建不同物理场之间的关系，如何选择合适的正则化方法以降低多解性、提高结果准确性，以及如何

处理非结构网格下的地形问题等. 本文将系统回顾各种电磁数据联合反演技术的基本思想和实现策略，并对未来研究方向进

行展望，以期促进其在能源和资源勘探及地球科学研究中的推广应用.
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Status and prospects of joint inversion of geophysical electromagnetic data
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Abstract: Geophysical electromagnetic data inversion is a typical underdetermined problem. Due to the limit-
ations of observational data, individual geophysical methods often suffer from significant non-uniqueness and un-
certainty,  making it  challenging to provide accurate and stable interpretations of subsurface geological structures.
To address this issue, joint inversion techniques have emerged as a key research direction in geophysical explora-
tion. By integrating the advantages of different geophysical methods, joint inversion enhances the resolution and re-
liability of inversion results. In recent years, with the rapid advancement of computational technologies and novel
numerical algorithms, various joint inversion approaches have been proposed and widely applied. These primarily
include empirical coupling methods based on petrophysical properties, structural coupling methods utilizing spatial
correlation constraints, and prior information-constrained methods based on Bayesian theory and fuzzy clustering,
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and so on. The core concept of these methods is to exploit the complementary information from different geophysi-
cal techniques to optimize the joint inversion objective function through petrophysical relationships, spatial gradi-
ent constraints, or probabilistic modeling. This reduces solution non-uniqueness and enhances the characterization
of subsurface  geological  structures.  Joint  inversion  techniques  have  demonstrated  significant  success  in   applica-
tions such as mineral exploration, energy resource detection, geological mapping, and deep structural studies.
　　Despite their promising potential, joint inversion techniques still face several challenges in practical applica-
tions. These challenges include the rational construction of relationships between physical fields, the optimization
of regularization strategies, the improvement of computational efficiency, and the handling of complex terrain ef-
fects. Future research in joint inversion will focus on the following aspects: (1) leveraging artificial intelligence and
data-driven methods to learn nonlinear mappings between petrophysical parameters from large-scale training data-
sets, thereby improving inversion speed and accuracy; (2) integrating multi-source data and prior information with-
in a probabilistic inversion framework to provide uncertainty quantification and enhance the reliability of inversion
results; (3) employing multi-resolution optimization strategies, wherein a coarse-scale inversion captures the over-
all structure before progressively refining the model to improve computational efficiency and mitigate local mini-
ma issues; and (4) integrating seismic, gravity, magnetic, and electromagnetic data to enhance inversion robustness,
while incorporating real-time monitoring data to better capture subsurface dynamic processes.
　　With advancements in high-performance computing, artificial intelligence, and novel geophysical observation
technologies, joint inversion methods are expected to play an increasingly crucial role in resource exploration, sub-
surface structure detection, and geological hazard monitoring, providing higher-resolution and more accurate sub-
surface imaging techniques for Earth science research.

Keywords:  joint  inversion;  electromagnetic  exploration;  multi-physics  coupling;  structural  coupling;  prior
information
 

0    引　言

重力、磁法、电磁和地震数据反映了地下不同

物理属性，联合反演方法能够耦合多种方法的技术

优势，弥补单一方法的不足，从而提供更加精细和

可靠的地下结构成像（唐塑等，2023）. 联合反演

的概念最早在 20世纪 70年代被提出，Vozoff和
Jupp（1975）首次实现了直流（direct current, DC）
电测深和大地电磁（magnetotelluric, MT）测深资

料的联合反演，标志着联合反演技术的初步应用.
其核心贡献在于提出了数据互补性利用与模型驱动

优化的基本框架：通过共享电阻率模型，整合直流

电法对浅层高分辨率与大地电磁法对深部电性结构

的探测优势，显著降低了解的非唯一性. 其设计的

加权最小二乘目标函数为后续多源数据融合提供了

理论模板. 这一工作奠定了联合反演的两大基石：

物理场互补性原理与数据-模型协同优化机制，并

为后续研究方向的拓展与方法革新提供了启示. 例
如，Gallardo和 Meju（2003）的交叉梯度约束与

Zhdanov等（2012）的 Gramian耦合方法，实际上

是对该工作框架的泛化，将单一电性参数（电阻率）

扩展至速度、密度等多参数联合反演；而贝叶斯反

演（Blatter et al., 2019）与深度学习融合（Colombo
et al., 2020）则进一步克服了早期依赖人工调参的

局限，实现了正则化权重自适应优化，并显著提升

了计算效率. 在应用层面，“浅至深”的数据协同

理念仍对现代资源勘探（致密气藏识别，Wang K
et al., 2023）与地质灾害监测（如火山形变实时成

像，Deng et al., 2023）等领域产生深远影响. 目前，

通过引入边缘计算、变维贝叶斯等新技术（梁萌

等 ,  2021; Yao et al., 2023），研究正在推动联合反

演技术从静态模型向动态化与智能化方向发展，但

其“多物理场信息融合”与“结构一致性约束”的

核心理念仍是联合反演技术的核心基础，持续驱动

地球物理探测向高分辨率成像、多尺度建模及多物

理场耦合的纵深发展，为复杂地质系统的精细化解

释与多维度应用提供了关键理论支撑. 随着计算技

术的发展和地球物理数据采集技术的进步，联合反

演由线性方法发展到非线性方法，并逐步发展为不

同物性之间的联合反演. 近年来，地球物理中多种

电磁数据与重、磁、震等地球物理数据的联合反演

技术在近地表高精度成像、资源和能源勘探、岩石
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圈结构研究和地球动力学研究等方面获得广泛的

应用.
目前的地球物理联合反演技术主要包括以下几

大类：

基于岩石物性经验关系的属性耦合联合反演是

一种利用岩石物理属性之间的经验关系，通过函数

映射实现不同模型参数的同步恢复，进而提高地球

物理勘探准确性的方法. 这种方法主要依赖于岩石

物性参数（如电阻率、密度、速度等）之间的相互

关系，以及这些参数与地质结构之间的联系，来实

现对地下地质结构的精确解释和预测（刘洁和张建

中，2020；张佩等，2019），也可通过这些关系对

反演模型进行改进（Colombo and De Stefano, 2007;
Giraud et  al.,  2017, 2019; Wen et  al.,  2024） .  Hauck
等（2011）基于 Archie公式（Archie, 1942）确定

岩石的电性和地震特性之间的物理联系，建立了电

磁法与地震数据联合反演的电阻率-密度关系. Wag-
ner等（2019）在 Hauck等（2011）给出的电阻率-
密度关系的基础上，实现地震折射数据和电阻率数

据的联合反演. Takougang等（2015）在地震和大

地电磁数据联合反演中，基于类似于 Gardner定律

的密度-速度关系从大地电磁反演得到的电阻率模

型中估计声阻抗. Lelièvre等（2012）提出自动调

整 Tikhonov权衡参数，以达到多个物理场数据集

的拟合，并在加拿大 Voisey's Bay块状硫化物矿床

勘探中，利用地震和重力数据联合反演有效恢复地

下物性特征. Carrillo和 Gallardo（2018）开发一种

用于重力和大地电磁数据二维联合反演的算法，可

同时寻求电阻率和密度的二维分布 .  Wang和
Yang（2023）利用指示函数实现岩石物理约束的

重力和磁力数据联合反演，并使用交替方向乘子法

解决优化问题.
在联合反演中，不同物理场的反演结果可通过

结构耦合（如边界、梯度）来约束，使得不同物理

场的反演模型在结构上保持一致. 这种方法在复杂

地质体（如火山、断层、油气储层）勘探中取得了

良好的效果. Haber和 Oldenburg（1997）提出联合

反演的结构耦合约束，并通过最小化不同模型之间

的曲率差实现一致性约束. Gallardo和 Meju（2003,
2004）提出电阻率和地震速度的交叉梯度作为约束

的新概念，对复杂近地表环境中的电阻率-速度关

系进行精细研究. 他们提出的交叉梯度约束假设目

标体在不同物理场中具有明显且一致的边界，进而

通过最小化模型梯度的向量积，将不同模型的结构

约束到尽可能相似. Zhdanov等（2012）提出一种

基于 Gramian约束的联合反演方法，该方法通过将

模型转换到 Gramian空间计算不同物理参数分布的

相关性. 殷长春等（2018）提出局部 Pearson相关

约束，将计算区域划分为若干不同尺度的子域，每

个子域的 Pearson相关系数表示了结构相似程度，

为解决多尺度问题提供了灵活性 .  Perez-Flores等
（2024）对墨西哥 Aciculco地热田观测的重力和航

空磁测数据进行联合反演，结果表明模型浅部与绘

制的地表断层具有较好的一致性 .  Molodtsov等
（2024）引入辅助多参数模型空间的联合反演通用

框架，实现了多物理场数据联合反演，并基于全张

量重力梯度和地震数据的时移联合反演，大地电磁、

地震和重力数据的联合反演以及电阻率层析成像和

音频大地电磁的联合反演等验证该反演框架的可

行性.
地质、岩石物理和已知钻孔数据等先验信息

逐渐在联合反演中得到应用. 通过贝叶斯等反演框

架将不确定性信息纳入反演过程，提升了反演结

果的可靠性. Bosch（2004）在最小二乘模型优化

方法中加入介质物理性质和岩性描述的联合估计，

通过描述岩性和介质物理性质之间的统计关系，

将先验信息加入到模型更新中，得到了很好的反

演效果. Shamsipour等（2012）提出基于协同克里

金的随机联合反演方法，在重磁联合反演中首先

整合了密度-重力与磁化率-总磁场之间的物理关系，

并将这种关系作为约束条件添加到反演过程中，

达到优化的目的. Giraud等（2017）将概率地质模

型作为信息来源，在空间上调节岩石物理约束推

导出初始模型，并通过整合岩石物理约束和地质

数据改善了地下成像结果、降低了不确定性. Yao
等（2023）提出一个基于变维马尔可夫链蒙特卡

罗方法的联合反演技术，克服了模型的参数化不

足或过多的问题，能够自动检测地球内部的电导

率不连续性. 在地球物理联合反演中，通过引入先

验地质信息来指导聚类中心的确定，可降低传统

人工解释的主观性和局限性（Carter-McAuslan et
al., 2015; Sun and Li, 2016）.

本文聚焦电磁探测数据的联合反演，在前人工

作基础上系统总结属性耦合、结构耦合、先验信息

引导等模型约束方法及串行、并行和协同联合反演

策略，对各种方法的基本原理及应用情况进行阐述，

并对当前联合反演方法面临的问题及未来可能的发

展方向进行展望. 
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1    联合反演方法概述

根据反演数据、模型耦合方式和反演算法的不

同，地球物理电磁数据与重、磁、震等数据的联合

反演可以分为：（1）基于经验函数的不同参数联

合反演；（2）基于多种电磁数据的同一参数联合

反演；（3）基于单一电磁数据的不同参数联合反

演；（4）基于结构耦合的多参数联合反演；（5）基

于先验信息引导的联合反演. 

1.1    基于经验函数的不同参数联合反演

此类方法通过岩石物理实验建立起电阻率、密

度和磁化率等物理属性的经验关系，进而实现联合

反演中的多参数耦合. 在单一地球物理方法无法确

定地下复杂结构的地区，可通过建立各种物理参数

之间的经验关系函数，提高反演结果的准确性和可

靠性.
Maier等（2010）基于阿尔奇定律和孔隙度-密

度关系，构建电阻率和密度的函数关系，并由南澳

大利亚伦马克海槽的实测数据反演验证其有效性.
结果表明该方法能更好地恢复模型的参数值及边

界 . 具体实施步骤为：利用 Archie公式（Archie,
1942）建立电导率与孔隙度和饱和度的经验关系，

并通过 Gassmann方程（Gassmann, 1951）计算地

震纵波速度与孔隙度和油、气、水饱和度的经验关

系，再结合两组公式建立电导率与速度的间接关联

性. 根据以上文献，Archie公式为：

σ =
1
a
σwϕ

mS n
w (1)

σ ϕ S w σw其中， 、 、 和 分别表示为电导率、孔隙度

和含水饱和度，a、m和 n分别为曲折因子、孔隙

度指数和饱和度指数. 同理，Gassmann方程为：

VP =

√√√√
Ksat+

4
3
µsat

ρsat
(2)

VP ρsat Ksat µsat式中， 、 、 和 分别为纵波速度、岩石

密度、孔隙流体饱和岩石的体积模量和地层弹性参

数. 岩石密度为：

ρsat = (1−ϕ)ρma+ϕ(S wρw + S oρo + S gρg) (3)

S w S o S g ρw

ρo ρg ρma

其中， 、 、 分别为水、油、气饱和度， 、

、 分别对应水、油、气密度， 为岩石骨架

的密度. 由上述过程即可建立电导率与速度间的关

联性.

Faust公式（格劳尔，1987）是岩石波速 v与
电阻率 R之间的直接经验关系，其数学表达式为：

v = KHCdR (4)

式中，K、C、d为不同地层系数，H为深度. 在浅

层沉积地层中，Faust公式具有较好的适用性，而

在深层钻孔和复杂地质条件下，需要对其进行修正

和校准以提高其准确性. 杨振武等（1998）在 Faust
公式的基础上，对测井数据进行统计，利用回归曲

线得到电阻率与速度之间的关系式，并用于大地电

磁与地震数据的联合反演.

σ

Heincke等（2006）根据研究区的实测电导率

、地震速度 v和密度 ρ等物性参数分布特征，构

建三种物性之间的经验关系，即：

σ = exp(−av2−bv− c) (5)

ρ = (1/v + 8500)/5000 (6)

式中，a = 2.31×10−7，b = −5.79×10−4，c = 0.124.
Moorkamp等（2011）根据地震、大地电磁和

标量及张量重力数据建立三维联合反演框架，采用

多尺度优化方法研究联合反演中涉及的多种物理参

数的耦合方法，并对交叉梯度耦合与采用经验公式

（5）和（6）的参数直接耦合进行了对比.
为解决岩石物性约束适应性有限的问题，张磊

（2016）提出宽范围岩石物性约束方法，实现了基

于模拟退火算法的大地电磁与重力数据联合反演.
宽范围物性约束策略结合岩石物性关联、范围约束

和耦合项的思维模式，这种模式不仅适用于梯度优

化算法，还可以结合其他优化算法和约束方式进一

步扩展. 曾志文等（2020）采用差分进化全局优化

算法实现了大地电磁和重力的宽范围物性约束联合

反演，进一步验证宽范围物性约束联合反演的适

用性.
在伦马克海槽的电阻率-密度联合反演研究中，

Maier等（2010）通过岩石物理实验与经验函数构

建了电导率与孔隙度、含水饱和度之间的关系. 实
验数据来源于南澳大利亚伦马克海槽钻孔岩芯样本

（孔隙度：15%～25%，饱和度：60%～80%）. 使
用 Archie公式建立了电导率与孔隙度及含水饱和

度之间的关系，并通过岩芯测量验证了线性密度-
孔隙度关系. 在联合反演过程中，输入数据包括大

地电磁（MT）视电阻率数据与重力布格异常数据，

目标函数约束电导率与密度通过孔隙度耦合，使用

高斯-牛顿法进行迭代优化，重力数据部分的正则
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化权重取 0.1和经验约束系数取 0.5. 反演结果显示，

基底界面深度误差从单一 MT反演的 15%降至联

合反演的 5%，并且密度模型的横向分辨率提升了

40%，清晰刻画了盐丘边界.
通过岩石物理实验（如 Archie公式、Gassmann

方程）建立物性关系的经验函数耦合联合反演，具

有明确的物理意义和较强的耦合机制可解释性

（Hauck et al., 2011）. 该方法通过线性或多项式经

验函数简化反演方程，提高了计算效率，尤其适用

于大规模数据反演（张磊，2016）. 然而，它也有

一些局限性 . 首先，依赖于精确的岩石物性参数

（如孔隙度和饱和度），在复杂地质条件下可能导

致关联精度不足（Giraud et al., 2017）. 此外，方法

的非线性适应性较差，难以处理如页岩夹层等非均

质或各向异性介质，可能导致深层电阻率出现偏

差. 该方法适用于均质地层，如沉积盆地（例如伦

马克海槽案例，基底误差降至 5%）和稳定的克拉

通区域（Wang et al., 2014），以及目标参数关联明

确的场景，例如电阻率与密度（Archie公式）和速

度与孔隙度（Gassmann方程）的经验关系已知的

情况. 

1.2    基于多种电磁数据的同一参数联合反演

不同电磁数据的联合反演是一种在地球物理勘

探中广泛应用的技术，旨在通过结合多种电磁数据

来提高地下电阻率结构成像的分辨率. 这种技术利

用了不同电磁方法在探测能力上的互补性，例如，

瞬变电磁法对浅层异常体较为敏感，而大地电磁等

方法对深部低阻异常体和大范围电性结构探测更为

有效（Lichoro et al., 2017; Meju, 1996）. Meju（1996）
利用瞬变电磁和大地电磁数据进行联合反演弥补单

一方法的不足，获得了更准确的地下电阻率结构信

息. Cao等（2023）提出了一种基于非结构四面体

网格的有限元方法，结合有限内存拟牛顿算法，对

航空天然场源垂向磁倾子电磁数据和地面大地电磁

法数据进行三维联合反演，以克服单一方法的局限

性，通过融合地面大地电磁法数据的深层探测能力

与天然场源垂向磁倾子电磁数据的近地表高分辨率

优势，实现对复杂地形下电性结构的多尺度成像.
在实际应用中，瞬变电磁和大地电磁数据的联合反

演已经被广泛应用于地质填图、矿产资源勘查、水

文地质调查等领域（Didas and Hersir, 2021; Gichira,
2012; Lichoro et al., 2017）.

可控源电磁法（ controlled-source  electromag-

netic, CSEM）和大地电磁数据联合反演结合了两

种方法的技术优势，在反演深度上具有互补性，可

提高地下结构和构造的成像精度（汪茂，2015；赵

宁等，2014）. Abubakar等（2011）提出了可控源

电磁和大地电磁数据的联合反演，而最优化方法采

用正则化高斯-牛顿方法. 通过利用乘性成本函数

（multiplicative cost function）为可控源电磁和大地

电磁数据分配相对权重，在反演过程中自适应地将

可控源电磁和大地电磁数据置于同等地位（Qin et
al., 2024; 赵宁等, 2014）. Qin等（2024）基于有限

内存拟牛顿优化算法对可控源电磁和大地电磁数据

进行联合反演，数据加权采用了数据点数比平方根

方法（square root  of  the ratio  of  the number  of  data
points）. 从反演结果可以看出，对比可控源电磁和

大地电磁单独反演，两者数据不加权的联合反演和

加权联合反演的成像结果清晰地描绘出沉积层浅部

的两个异常体，其位置和形状比单独反演结果更加

吻合真实模型（图 1）. 不同反演方法在分辨率上

存在差异. 可控源电磁单独反演能够清晰显示沉积

层浅部的两个异常体的位置，但无法准确描绘其形

状；大地电磁单独反演对深部结构敏感，显示的形

状较接近真实模型，但基底电阻率偏高. 加权联合

反演相较于可控源电磁单独反演，能够更准确地刻

画浅部异常体的形状，并更好地匹配真实模型. 尽
管联合反演也捕捉到了较深的基底结构信息，但其

形状仍未完全接近真实模型. 总体来看，加权联合

反演提供了较单独反演更优的成像效果和更高的分

辨率.
直流电阻率和瞬变电磁数据联合反演是一种提

高地下电性结构解释精度的重要手段. 近几十年的

研究不仅开发出直流与瞬变电磁联合反演（Raiche
et al., 1985; Yang and Tong, 1999），还开发出直流

与频率域电磁数据的联合反演（Monteiro Santos et
al., 1997; Ong et al., 2010）. 在最近的研究中，Bor-
tolozo等（2024）实现直流和瞬变电磁数据的二维

联合反演，并通过理论模型和实际案例进行了测

试. 合成数据反演结果表明瞬变电磁单独反演中，

由于感应电流呈水平“烟圈”分布，该台阶模型展

现为具有均匀电阻率的导电层. 融合直流电阻率数

据的联合反演结果明显优于单独瞬变电磁反演. 巴
拉那沉积盆地实测数据的联合反演结果表明，相比

于直流电阻率和瞬变电磁单独反演，联合反演不仅

保留了直流电阻率法浅部的高分辨率，还很好地划

分出深部地层的结构（图 2）.
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图 1      可控源电磁和大地电磁的联合反演结果. （a, b）分别是可控源电磁和大地电磁的单独反演结果；（c, d）分别是二者

不加权和加权的联合反演结果（引自 Qin et al., 2024）
Fig. 1    Joint inversions of controlled-source electromagnetic and magnetotelluric data. (a) and (b) show the separate inversion results

of controlled-source electromagnetic and magnetotelluric data, while (c) and (d) show the joint inversion results of both data
with and without weighting (from Qin et al., 2024)
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图 2      巴拉那沉积盆地数据案例研究. （a）直流电阻率反演结果；（b）瞬变电磁反演结果；（c）联合反演结果；（d）地

质剖面图（引自 Bortolozo et al., 2024）
Fig. 2    Case study of Paraná sedimentary basin. (a) DC resistivity inversions; (b) Transient electromagnetic inversions; (c) Joint inver-

sions; (d) Geological profile (from Bortolozo et al., 2024)
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多电磁数据联合反演具有明显优势. 通过结合

瞬变电磁（对浅层结构敏感）和大地电磁（对深部

结构优势）数据，可实现分辨率的互补，从而提升

全深度电阻率成像的精度（Meju, 1996）. 此外，采

用多数据源加权（如乘性成本函数）能够有效抑制

单一方法中的噪声干扰，增强反演结果的鲁棒性

（Qin et al., 2024）. 然而，该方法对数据兼容性要

求较高，需要对不同数据源的频段进行统一并进行

时空对齐，若处理不当，可能导致反演的不稳定性

（赵宁等，2014）. 此外，多数据集联合优化需要

高效的正则化策略（如自适应权重分配），从而增

加了计算复杂度. 该方法适用于多尺度探测任务，

特别是沉积盆地的浅部高分辨率与深部构造联合成

像（如巴拉那盆地案例，图 2），以及对低阻异常

体（如油气藏、地热储层）等复杂电性结构的多方

法协同约束. 

1.3    基于单一电磁数据的不同参数联合反演

单一电磁数据考虑多参数联合反演可减少反演

的多解性、提高反演结果分辨率. Kozhevnikov和
Antonov（2009）实现带激电效应（induced polari-
zation, IP）的瞬变电磁数据联合反演，通过引入先

验信息提升数据拟合效果、显著提高反演精度. 满
开峰等（2023）基于 Pearson相关性约束和深度学

习联合反演电阻率和极化率，结合卷积神经网络

（提取空间特征）和长短期记忆网络（捕捉时间序

列依赖性），通过 Cole-Cole模型生成不同激电参

数组合的正演响应作为训练集，预测出时间常数和

频率相关系数作为先验信息，并设置约束范围. 在
该约束范围内，联合反演电阻率和极化率，利用

Pearson相关系数构建物性参数关联性，采用高斯-
牛顿法求解目标函数，更新电阻率和极化率，同时

保持时间常数和频率相关系数在约束范围内. Zhu
等（2023）以有限内存拟牛顿法为反演工具，开发

了一种基于交叉梯度约束的电阻率法和时间域激发

极化法的三维联合反演算法. 在联合反演过程中，

电阻率和极化率模型交替迭代更新，通过交叉梯度

对两个参数的反演结果进行相互约束，在最小化单

独反演的数据失配的基础上，可以找到一个电导率

和极化率在结构上具有相似分布的模型. 合成示例

的两个棱柱体模型的单独反演结果在边界处出现扭

曲，而联合反演能更好地抑制噪声影响，较好地

恢复异常体的形状，可有效识别异常体的位置

（图 3）.

单一数据多参数反演方法在地球物理勘探中具

有重要优势. 通过联合反演极化率与电阻率（Zhu et
al., 2023），可以有效减少多解性问题，避免单一

参数反演中常见的边界模糊现象. 此外，该方法能

够充分挖掘单一数据集中的多物理响应（如激电效

应与电磁感应），提高数据的利用率. 然而，参数

耦合的挑战仍然存在，尤其是需要精确构建物性关

联模型（如 Cole-Cole模型），否则可能导致伪异

常的引入. 同时，该方法对数据质量的要求较高，

尤其是在高频噪声或仪器误差影响下，可能加剧参

数之间的交叉干扰. 该方法特别适用于精细化目标

识别，如金属矿体边界刻画（满开峰等，2023）及

含水层极化率反演，也适用于有限数据场景，例如

井周或实验室内的小尺度多参数同步反演. 

1.4    基于结构耦合的多参数联合反演

基于结构耦合的多参数联合反演方法是假设不

同物理属性间在结构（如层边界、断层位置）上存

在一致性，常用于断裂带、盆地边界和金属矿等同源

地球物理异常结构成像. Haber和 Oldenburg（1997）
首次提出了结构耦合约束的概念，并基于模型曲率

的结构算子约束不同物性参数之间的变化，实现地

震数据和重力数据联合反演.
目前主流的结构耦合约束方法有交叉梯度约束、

Gramian约束和 Pearson相关性约束等. 交叉梯度约

束方法是一种用于联合反演不同地球物理参数的结

构耦合约束方法. 具体来说，交叉梯度函数通常定

义为两个物性参数梯度的叉积，这使得在联合反演

过程中，不同参数的模型能够相互制约，从而减少

多解性并提高反演结果的可靠性. Gallardo和 Meju
（2003）首次引入交叉梯度函数实现电阻率和地震

波速度间的结构耦合，从联合反演模型中获得一致

的结构模型. 交叉梯度联合反演方法的有效性已经

在各种不同类型数据测试中得到验证，包括重力、

磁法、大地电磁、地震走时等多种地球物理数据的

联合反演（Fregoso and Gallardo, 2009; Gallardo and
Meju,  2004; Gross,  2019;  Joulidehsar  et  al.,  2018; 李
桐林等 ,  2015; 彭淼等 ,  2013; Penta  de  Peppo et  al.,
2024; Wu et al., 2020, 2022; Zhang et al., 2019; Zhou
et al., 2015）. 高级和张海江（2016）在地震走时与

直流电阻率联合反演中，采用交叉梯度交替约束以

平衡数据拟合与结构约束，提高了地下结构成像分

辨率和识别精度. 交叉梯度函数可以表示为两个模

型梯度矢量的叉乘积，即：
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t(x, y, z) = ∇mr(x, y, z)×∇ms(x, y, z) (7)

mr ms其中， 和 分别为两种物性参数（比如电阻率

与密度）.
交叉梯度联合反演的核心在于利用交叉梯度函

数作为约束条件，通过数学模型将不同物性参数的

空间结构联系起来，从而在联合反演过程中实现结

构的一致性（图 4）. 交叉梯度约束联合反演方法

虽然在提高反演结果的可靠性和准确性方面具有明

显优势，但也存在难以处理复杂非线性地质结构、

计算成本高以及对数据质量要求高等局限性（Gross,
2019; Joulidehsar et al., 2018; 彭淼等, 2013）. 在实

际应用中，需要根据具体的探测目标综合考虑这些

因素，以充分发挥交叉梯度约束联合反演的技术优势.
基于 Gramian约束的联合反演是通过引入

Gramian矩阵来表征模型参数之间的线性相关性，

实现约束反演. Zhdanov等（2012）提出一种基于

Gramian约束的广义联合反演方法，通过将模型参

数转换到 Gramian空间，联合约束项可表示为多模

型参数相应的 Gramian矩阵的行列式. 考虑模型空

间函数 p的范数为：

∥p∥2Gn = (p, p)Gn =G(m1, m2, · · · , mn−1, p) (8)

即为单个模型参数的 Gramian矩阵的行列式. 当进

行 Gramian约束时，还可引入转换算子 T，此时

Gramian矩阵的行列式变为：

∥T p∥2Gn = (T p, T p)Gn =G(Tm1, Tm2, · · · , Tmn−1, T p)
(9)

具体来说，Gramian约束通过最小化模型参数
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图 3      直流电阻率法和时域激发极化合成数据单独反演和联合反演结果. （a, c）单独反演结果；（b, d）联合反演结果. 图 a、
b为 x=0 m时电阻率模型和极化率模型的垂直切片图，而图 c、d为 z=8 m深处的平面剖面图. 第三列显示了交叉梯度

图（引自 Zhu et al., 2023）
Fig. 3    Imaging results of separate and joint inversion of synthetic DC resistivity and time-domain induced polarization data. (a), (c)

show the separate inversions; (b) and (d) show the joint inversions; Figs. a, b are vertical slice of the resistivity and the charge-
ability at x=0 m; Figs. c, d are plane view at z=8 m. The third column shows the cross-gradient (from Zhu et al., 2023)
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梯度的 Gramian泛函来实现. 这使得模型参数梯度

向量保持平行，从而保证了不同物理属性间的线

性相关性（ Jorgensen  and  Zhdanov,  2019;  Tu  and
Zhdanov, 2021）. 在大地电磁测深和重力的联合反

演中，Gramian约束可以将物性参数约束在一定范

围内，提高先验物性关联信息的利用率，并有效限

定物性耦合的范围（图 5）. 在实际应用中，Gramian
约束常与其他类型的约束（如惩罚函数项）联合使

用，以进一步优化反演结果. 例如，在重力和大地

电磁数据的联合反演中，通过引入 Gramian约束和

惩罚函数项，可以有效地将密度和电阻率的分布限

制在合理的范围内，改善耦合效果（郭一豪等，

2021；曾志文等，2023）. 陈晓等（2023）在Gramian
约束的基础上引入不等式约束以限制模型参数的范

围，确保反演结果符合实际地质情况. 在先验物性

信息可信度较高的情况下，可选用转换函数方法实

现物性参数的不等式约束；反之，可选择惩罚函数

方法实现物性参数的不等式约束. Gramian约束虽

然对先验信息依赖性低，但对明确的物性关联信息

利用率也较低. 这意味着在实际应用中，Gramian
约束可能无法充分利用已知的物性关联信息来提高

反演结果的精度（曾志文等，2023）.
基于 Peason相关性约束（Pearson  correlation

constraint, PCC）的联合反演主要是利用 Pearson相
关系数来描述和约束不同地球物理参数之间的关系，

以减少反演的多解性. 殷长春等（2018）提出基于

局部 Pearson相关性约束（local Pearson correlation
constraint, LPCC）的联合反演方法. 通过假设每个

局部区域模型参数具有线性相关特性，对局部模型

参数施加相关性约束，实现联合反演. 这种方法在

地球物理数据的反演解释中得到了广泛应用（Liu
et al., 2022; 满开峰等, 2023; 孙思源, 2019; Zhang S
et al., 2024）.

m1 m2对于两个模型参数 、 ，Pearson相关系数
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图 4      块状体模型反演结果. （a）合成块状体电阻率模型；（b）合成块状体速度模型；（c）单独大地电磁反演恢复的电阻

率模型；（d）单独随钻地震（seismic while drilling, SWD）反演获得的剪切波速度模型；（e）交叉梯度成像方法获

得的电阻率模型；（f）交叉梯度成像方法获得的速度模型. 黑线勾勒出电阻率-速度模型的结构. “RMS”表示数据拟

合结果（引自Wu et al., 2020）
Fig. 4    Inversions of block anomalous body models.  (a)  Resistivity model;  (b) Velocity model;  (c)  Resistivity models recovered by

separate  magnetotelluric  inversions;  (d)  Velocity  model  obtained  by  separate  seismic  while  drilling  (SWD)  inversions;  (e)
Resistivity model obtained by cross-gradient imaging; (f) Velocity models obtained by cross-gradient imaging. The black lines
outline the structure of resistivity or velocity models, and "RMS" indicates the data fitting result (from Wu et al., 2020)
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可表示为：

pcc(m1,m2) =

M∑
i=1

(mi
1− m̄1)(mi

2− m̄2)√√
M∑

i=1

(mi
1− m̄1)

2

√√
M∑

i=1

(mi
2− m̄2)

2

(10)

式中，M为局部控制域个数。

局部 Pearson相关性约束联合反演的前提是不

同地球物理响应可能由相同的异常体引起，并且

不同地球物理参数分布之间存在相关性. 通过在局

部区域对模型参数施加 Pearson相关性约束，可以

有效地利用多种地球物理数据信息，从而改善单

一地球物理反演的收敛性. 局部 Pearson相关性约

束联合反演方法受子域大小的影响. 子域选取过小

可能会导致两个参数模型无法耦合，而子域过大

则可能使子域内两种参数的不存在简单的线性相

关，不利于参数的结构耦合（图 6）. 图 7展示了

航空电磁和航空磁测数据基于局部 Pearson相关性

约束的联合反演结果对比. 由图可以看出，通过选

择合适的子域，联合反演分辨率和准确性得到明

显改善.
结构耦合联合反演在处理复杂地质构造时具有

独特优势. 该方法通过交叉梯度、Gramian或 Pear-
son相关性约束，能够在不同物理场之间保持结构

一致性，而无需显式建立物性关系（Gallardo and
Meju, 2003）. 它特别适用于复杂的非均质区域，如

断裂带和火山构造，能够有效地对齐模型边界. 然
而，结构耦合联合反演的计算成本较高，因为需要

在反演过程中迭代优化结构约束项（如交叉梯度泛

函），使得时间复杂度增加 30%～50%（彭淼等，

2013） . 此外，低信噪比（SNR<10 dB）情况下，

结构约束可能失效，导致模型发散（Gross, 2019;
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图 5      合成模型垂向分布特征. （a, b）展示了真实异常密度和电阻率模型；（c, d）展示了单独反演的密度和电阻率模型；

（e, f）展示了联合反演的密度和电阻率模型（引自 Jorgensen and Zhdanov, 2019）
Fig. 5    Vertical sections of the synthetic model. (a) and (b) show true anomalous density and resistivity models; (c) and (d) show the

separate inversion results of density and resistivity; (e) and (f) show the joint inversion results of density and resistivity mod-
els (from Jorgensen and Zhdanov, 2019)
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图 6      Peason相关性约束计算图. （a, b）为电阻率和磁化率的二维模型；（c-f）分别为整个模型和第 1区、第 2区和第 3
区子域的电阻率的自然对数和磁化率重新排列的一维阵列（引自 Liu et al., 2022）

Fig. 6    Diagram for calculating Pearson correlation coefficients. (a) and (b) show 2D resistivity and magnetization models; (c), (d), (e)
and (f) show the rearranged 1D array for resistivity and magnetization for the entire model and zone 1, 2, and 3, respectively
(from Liu et al., 2022)
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Wu et al., 2022）. 该方法广泛应用于复杂地质构造

的反演，如隐伏断层（Pearson相关系数>0.8；Liu
et al., 2022）和盆地边界（Perez-Flores et al., 2024;
图 7），以及多物理场协同成像（Molodtsov et al.,
2024）. 

1.5    基于先验信息引导的联合反演

结合地质、钻孔、物理实验等先验信息，还可

构建约束条件对联合反演进行约束. 在最为典型的

贝叶斯反演中，通过先验概率分布引导反演，可有
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图 7      航空电磁和航空磁测数据的真实电阻率模型及反演结果. （a-c）从不同方向观测到的真实电阻率模型；（d-f）航磁数

据单独反演；（g-i）交叉梯度联合反演；（j-l）8×8×6子域 Pearson约束联合反演；（m-o）8×8×10子域 Pearson约
束联合反演. 图 c、f、i、l、o中的黑线标记了垂直切片中的异常边界（引自 Liu et al., 2022）

Fig. 7    True resistivity model and inversion results of AEM and AirMag data. (a), (b) and (c) are true resistivity model observed from
different directions; (d), (e) and (f) are AirMag inversion results; (g), (h) and (i) are cross-gradient joint inversion results; (j),
(k)  and (l)  are  joint  inversion results  with  8  × 8  ×6 subdomain for  Pearson correlation constraint;  (m),  (n)  and (o)  are  joint
inversion results  with 8 × 8 ×10 subdomain for  Pearson correlation constraint.  The black lines in Figs.  c,  f,  i,  l,  o  mark the
boundary of the anomalous body (from Liu et al., 2022)
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效提升反演解释的可信度. 模糊均值聚类算法能够

将岩石物理信息构建到反演中，面对复杂地质条件

依然能够提供可靠的反演结果.

P(m|d)

贝叶斯联合反演为处理非线性问题提供了强大

的工具. 通过后验概率分布在先验信息和观测数据

约束下的模型参数评估，定量评估反演不确定性，

准确反映观测数据和先验信息对模型参数的约束能

力（蒋星达等，2022）. 在贝叶斯反演框架中，后

验概率密度 表征当前观测数据 d条件下待求

模型参数 m的概率，即：

P(m|d) =
P(m)P(d|m)

P(d)
(11)

P(d|m)

P(m) P(d)

其中， 是给定 d的 m的似然函数，表示在给

定模型 m的情况下，观测数据 d出现的概率，

表示模型参数的先验信息， 是观测数据 d
出现的概率. 在地球物理勘探领域，贝叶斯联合反

演被广泛应用于储层物性参数的联合反演、各向同

性（transverse isotropy with a vertical axis of symme-
try, VTI）介质多波叠前联合反演、以及电磁和其

他地球物理数据的联合反演（Blatter  et  al.,  2019;

Crepaldi et al., 2024; de Figueiredo et al., 2018; 侯栋

甲等, 2014; Yao et al., 2023）. 这些研究展示了贝叶

斯联合反演在改善反演精度和稳定性、抗噪能力以

及物性参数之间耦合程度方面的技术优势. 贝叶斯

联合反演关键在于获取物性参数的后验概率密度函

数，并结合全局优化算法如模拟退火进行反演

（郭曼等，2018）. Blatter等（2019）在进行新泽

西近海淡水含水层成像研究中，利用联合反演成功

识别了电阻率较高的区域，并且提供了更低的模型

参数不确定性. Yao等（2023）基于贝叶斯框架实

现大地电磁和地磁测深（geomagnetic depth sound-
ing, GDS）数据的变维贝叶斯联合反演，与单独反

演相比，联合反演提高了分辨率、降低了不确定性

（图 8）. 贝叶斯联合反演虽然是一种强大的工具，

但它也面临着计算复杂、模型平均泛化、多解性和

不确定性量化等技术难题，以及对先验信息依赖的

局限性（郭曼等，2018；侯栋甲等，2014）.
模糊均值聚类方法是一种用于搜索数据之间的

相似性，并客观地对所考虑的数据进行快速归类的

方法. 在地球物理勘探中，模糊 C均值聚类（fuzzy
 

(a)

(c) (d)

(e) (f)

(h)(g)

(b)
0

500

1000

深
度

/k
m

深
度

/k
m

相
位

/(
°)

lo
g

1
0

 ρ a
/(Ω

·m
)

电导率的对数/(S·m−1)

电导率的对数/(S·m−1) 电导率的对数/(S·m−1)周期/h 周期/d

周期/s

虚
部

T
F

S
实
部

T
F

S

虚
部

Q
响
应

实
部

Q
响
应

−3

−4 −2 0 2

−1

1

0

−1

1 0.35
0.30
0.25

0.100

0.075

0.050

0.025

0

4 4.8 6 8 12 24

4 4.8 6 8 12 24 101 102

101

100

50

60

70

2.0
2.5
3.0
3.5

101 102 103 104

100 101 102 103 104

102

−2 −1 0

1500

2000

0

500

1000

1500

2000 −4 −2 0 2

1.0

0.8

0.6

0.4

0.2

0

0

500

1000

1500

2000

深
度

/k
m

−4 −2 0 2

0

500

1000

1500

2000 −4 −2 0 2

0

500

1000

1500

2000

真实模型
中位数
90%可信区间

图 8      （a）Kuvshinov等（2021）反演得到的分层地球电导率模型；（b）计算的大地电磁视电阻率和相位；（c）太阳静

日（solar quiet, Sq）Global-to-local转换函数计算的实、虚部响应；（d）卫星扰动风暴时间（disturbance storm time,
Dst）Q响应. 图 b、d中的误差棒表征数据不确定性. （e）大地电磁、（f）太阳静日、（g）扰动风暴时间单独反演

结果及（h）联合反演的层电导率后验概率分布. 暖色和冷色分别表示较高和较低的概率，白线表示真实模型，红色

实线表示后验中值模型，左、右红色虚线表示对应于 90%可信区间（引自 Yao et al., 2023）
Fig. 8    (a) A layered Earth conductivity model derived by Kuvshinov et al. (2021) ; (b) Synthetic MT apparent resistivity and phases;

(c) Real and imaginary responses calculated by the Global-to-local conversion function of Solar quiet (Sq) ; (d) Satellite dis-
turbance storm time (Dst) Q-response. The posterior probability distributions of the layer conductivities for (e) MT-only, (f)
Sq-only,  (g)  Dst-only,  and (h)  joint  inversions.  The grey lines  in  Figs.  b,  d  denote  the  predicted responses  for  50 randomly
selected  conductivity  models  of  the  joint  posterior  model  distribution.  The  white  lines  denote  the  true  model,  while  the  red
solid lines indicate the posterior median model. The left and right dashed red lines indicate 90 per cent credible interval (from
Yao et al., 2023)
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C-means, FCM）常用于将地下介质的不同岩性或

物性特征进行分类和约束，从而改善反演结果的可

靠性（刘洁和张建中，2020） .  Sun和 Li（2011）
提出了模糊 C均值聚类算法. 将多种岩石物理信息

通过此聚类算法纳入反演过程，反演结果既拟合了

地球物理数据，也符合先验信息约束条件. 在反演

过程中，模糊均值聚类算法可以表示为以下目标函

数的最小化问题，即

ΦFCM =

N∑
j=1

C∑
k=1

uq
jk

∥∥∥m j− vk
∥∥∥2

2 (12)

m j

vk

其中，N为模型单元个数，C为聚类个数， 是

第 j个数据项， 为第 k个聚类中心，参数 q称为

模糊化参数. 模糊 C均值聚类法多用于地震与重力

联合反演，旨在实现速度和密度模型的耦合

（Carter-McAuslan et al., 2015; Lelièvre et al., 2012）.
Sun和 Li（2016）将多种岩石物理数据视为参数域

中的不同聚类，通过参数域中的引导模糊均值

（guided fuzzy C-means, GFCM）聚类，联合反演

多种岩石物理信息. 联合反演模型既增强了结构相

似性，又提高了岩石物理相关性，在空间域和物理

属性参数域均能很好表征地下真实情况. 模糊 C均

值聚类算法还被用于电阻率和其它地球物理数据联

合反演，通过引入岩石物理信息作为约束条件，可

有效减少反演过程中的多解性（Shi  and  Wang,
2024; Yang et al., 2021; Zhang R et al., 2024）. Zhang
R等（2024）最新提出的自适应虚拟岩石物理信息

的引导模糊均值聚类约束反演方法，称为 XG-
FCM约束反演方法. 该方法摆脱了传统方法的限制，

不依赖于先前的岩石物理信息，采用局部密度聚类

算法，从反演迭代中动态提取电阻率信息，自动确

定聚类数量和聚类中心. XG-FCM约束方法可显著

提高重建的电阻率模型分辨率，清晰划分地下异常

体边界（图 9）. 由于模糊均值算法在处理非凸结
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图 9      大地电磁数据不同约束方法反演结果. （a）真实模型；（b）平滑约束反演；（c）具有不完整岩石物理信息的引导模

糊均值约束反演（GFCM_IC）；（d）具有完整岩石物理信息的引导模糊均值约束反演（GFCM_C）；（e）在电阻

率值为 100 Ω·m的初始模型下进行的 XG-FCM约束反演；（f）在电阻率值为 101.5 Ω·m的初始模型下进行的 XG-
FCM约束反演（引自 Zhang R et al., 2024）

Fig. 9    MT Inversions for different constrained methods. (a) True model; (b) Smoothly-constrained inversion; (c) GFCM-constrained
inversion with incomplete rock physics information (GFCM_IC); (d) GFCM-constrained inversion with complete rock physics
information (GFCM_C); (e) XG-FCM-constrained inversion performed under an initial model with a resistivity value of 100
Ω·m; (f) XG-FCM-constrained inversion performed under an initial model with a resistivity value of 101.5 Ω·m (from Zhang
R et al., 2024)
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构的数据时效果较差，限制了其在复杂地质结构中

的应用，并且当类与类之间的样本量相差较大时，

模糊均值算法的效果也会受到影响（Colombo and
Rovetta, 2018）.

基于先验信息引导的联合反演方法在不确定性

量化和数据融合方面具有显著优势. 通过贝叶斯框

架，利用后验概率分布评估模型的可信度，从而实

现对不确定性的精确量化（Yao et al., 2023）. 此外，

该方法能够整合地质、钻孔、岩石物理实验等先验

信息，显著提高反演的可靠性（Blatter et al., 2019）.
然而，该方法的计算复杂度较高，MCMC采样或

变维贝叶斯反演的计算时间显著增加（例如阿拉斯

加案例耗时增加 5倍；Yao et al., 2023）. 此外，方

法对先验信息依赖性较强，若先验模型存在偏差，

可能导致反演结果系统性地偏离真实值（Blatter et
al., 2019）. 该方法广泛适用于高精度储层刻画，如

地热田电导率分布（不确定性±0.3 S/m）和油气藏

孔隙度反演，同时也适用于多学科数据融合，特别

是在地质模型与地球物理数据的协同约束中（Sun
and Li, 2016）. 

2    联合反演策略分类
 

2.1    顺序反演

顺序反演是先单独反演一种数据类型，再将其

结果作为另一类数据反演的初始模型，以改善反演

结果. 例如，先基于地震反演构建初始模型，再使

用电磁数据对反演模型进行更新. Lines等（1988）
首次提出串行联合反演，并基于最小二乘反演方法

实现了地震与重力数据的联合反演. 相较于同时反

演两组数据，顺序联合反演的各数据之间不需要明

确的先验加权，算法容易实现. Dell'Aversana（2001）
采用顺序联合反演策略对意大利南部亚平宁半岛南

部的地震、大地电磁和重力数据进行了反演解释，

产生了系列“局部模型”，最后汇聚成一个最终的

地球物理模型. Wang等（2014）利用顺序联合反演

策略融合华北克拉通的重力与地震数据，最终得到

华北克拉通岩石圈的三维密度结构. 当数据存在噪

声污染、先验信息不准确时，顺序联合反演所得结

果可能不稳定，限制其应用效果. 

2.2    协同反演

协同联合反演通过在两个或多个独立的反演过

程中交换信息来实现信息互补. 协同反演通过动态

反馈机制，使不同物理场的反演结果相互调整，以

达到最佳一致性，常用于复杂地质结构探测数据反

演解释. Lines等（1988）首次提出顺序反演和协同

反演，并通过协同反演将所有可用的地表和井中数

据放到反演中减少反演结果的模糊性 . 陈晓等

（2011）将正则化的概念引入大地电磁和地震数据

的联合反演中，并使用自适应方法确定正则化参

数. Paasche等（2012）扩展了基于 C均值聚类分析

和传统单输入数据集反演算法的区域协同反演方法，

实现部分位于同一模型区域的数据协同反演 .
Takam-Takougang等（2015）利用协同反演方法从

地震和大地电磁数据中反演声阻抗 . 李兆祥等

（2015）提出了感应极化二维正反演算法和以共同

反演网格和交叉梯度为结构约束的同步反演算法，

实验结果表明同步反演可以改善不同物理结构的模

型反演结果，具有广泛的适用性 .  Syracuse等
（2016）在进行地震和重力联合反演时利用了不同

数据类型的灵敏度差异，在浅部和深部均获得比单

独使用传统传播时间层析成像更高分辨率的速度模

型. Gonçalves和 Leite（2019）提出了一种针对复

杂地质结构的叠后地震反射和重力数据协同反演方

法. 王乐洋等（2021）实现了地磁测深数据和大地

测量数据的协同反演. 协同反演方法无需确定两类

数据的相对权重，依旧能够得到较好的反演效果，

但该方法比较依赖于精度较高的数据. 协同反演目

前是联合反演的主流技术，比顺序反演具有更好的

适应性和可靠性. 

3    未来发展方向

随着数值计算技术和计算机硬件的飞速发展，

地球物理电磁法联合反演研究方向主要集中在以下

几个方面. 

3.1    基于深度学习的联合反演

深度学习技术为联合反演带来了新的思路，通

过训练模型学习复杂物理场之间的映射关系，可以

加快反演速度、改善反演精度，目前已在电磁法反

演方面取得了广泛应用. Puzyrev（2019）提出了一

种基于卷积神经网络的电磁反演方法，通过训练深

度神经网络，实现了对地下电阻率分布的快速预

测. Asif等（2023）构建了一个地球物理约束的电

磁电阻率模型数据库，为深度学习在电磁法中的应
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用提供了标准化数据集，促进了数据驱动方法的发

展. Moghadas（2020）开发了一种一维深度学习反

演方法，利用卷积神经网络处理电磁感应数据，克

服了传统反演方法中的非线性和非唯一性问题. Yu
等（2024）提出了一种针对航空时域电磁数据的深

度学习反演方法，采用卷积神经网络实现了对复杂

地层结构的高效反演. 此外，Li等（2023）引入了

一种自监督知识驱动的深度学习方法，用于三维磁

法反演，提高了反演结果的准确性和可靠性. 这些

研究表明，深度学习在电磁法反演中的应用前景广

阔，推动了其在联合反演方面的相关研究. Liu和
Liu（1998）提出了一种基于人工神经网络（artifi-
cial neural network, ANN）自适应映射功能的数据

驱动方法，使用人工神经网络技术查找和近似由井

数据和井附近地震记录组成的数据集引导的反演算

子. Colombo等（2020）开发了一种将物理驱动的

反演效率与基于数据驱动的深度学习反演的强大功

能相结合的混合工作流程. 该方法在每次反演迭代

后重新训练网络，耦合反演方案不断优化，最后收

敛到一个同时满足数据拟合条件和深度学习网络参

数优化的通用模型. Hu等（2022）开发了一个深度

学习增强的联合反演框架，该框架旨在将深度神经

网络（deep neural network, DNN）与传统的独立反

演工作流相结合，并以迭代方式对联合反演结果进

行改进. Wang Y等（2023）证明了深度学习方法在

优化策略、模型正则化和目标函数定义等方面均较

常规反演存在明显优势. 基于深度学习框架实现联

合反演预期将获得分辨率更高的成像结果. 

3.2    不确定性分析和贝叶斯反演

不确定性分析有助于量化反演结果的可信度，

而贝叶斯反演框架可通过引入先验信息和后验分布

实现不确定性量化. 贝叶斯反演能够结合多物理场

和先验信息，以概率分布形式输出模型，从而提升

解释的可信度. 在地球物理领域，基于贝叶斯思想

的联合反演尚处于起步阶段（Yao et  al.,  2023） .
Kim等（2016）提出了一种有效的贝叶斯方法用于

面波频散和接收函数数据的联合反演. 该方法将优

化阶段的变维模型选择与之后参数不确定性估计相

结合，可以提供可靠的模型选择. Peng等（2023）
使用贝叶斯方法对瞬变电磁数据进行反演，通过减

小模型参数偏差和估计模型不确定性带来的误差影

响，提高反演分辨率. Deng等（2023）提出了基于

梯度的马尔可夫链蒙特卡罗方法，使用梯度信息从

后验概率分布中有效地提取样本，以引导样本朝向

高概率区域，并使用海森方法对局部后验概率分配

进行近似. 该方法与确定性反演方法相比提高反演

效果，但增加了计算成本. Xi等（2024）开发了贝

叶斯框架下震源断层参数的多源数据联合反演方法，

并通过均方根误差确定各种震源数据对震源参数的

贡献权重比. 总体来看，先验信息的融合将有效降

低联合反演的多解性，改善成像分辨率. 

3.3    多尺度联合反演

多尺度反演策略通过先在大尺度上粗略反演，

再逐步细化到小尺度，可以显著降低计算量，改善

反演稳定性. 目前多尺度反演多为单一数据反演. 印
兴耀等（2020）提出基于多尺度快速匹配追踪的联

合域地震反演. 这是一种地震数据多尺度的逐级迭

代反演技术，所提出的迭代反演策略可以有效地减

少对初始模型的依赖. Pang等（2022）提出了一种

三维电阻率多尺度反演方法，该方法采用三维卷积

小波变换从电阻率模型中提取小波参数信息. 在小

波域求解，再使用反卷积变换将小波域解变换到空

间域. Li和 Ben-Zion（2024）开发了基于多尺度速

度模型的反演算法，所获得的多尺度速度模型可用

于推断震源特性、动态破裂和地面运动模拟，以及

对断层和构造过程的分析.
将多尺度反演方法与联合反演技术相结合，可

以实现从粗到细的不同尺度约束，预期可获得更可

靠的联合反演结果. 在复杂地质条件下，如盐湖、

岩溶区或断层密集区域，多尺度联合反演能够通过

整合不同尺度的数据（如高频地震数据与低频地质

数据）来提高反演精度和分辨率. 例如通过引入低

频模型约束，可以有效缓解常规反演方法对初始模

型精度的依赖，从而提高反演结果的收敛性和精度

（印兴耀等，2020）. 电磁法的多尺度联合反演在

不同地质条件下展现出显著优势，其通过整合多源

地球物理数据与多尺度建模策略有效改善了反演结

果的稳定性和准确性. 传统单一尺度反演易受局部

极小值影响，例如早期大地电磁反演常因初始模型

选择偏差导致解的非唯一性，而多尺度反演通过将

反问题分解为不同尺度的序列，逐级优化模型参数，

显著提升了全局收敛性（徐义贤和王家映，1998）.
相较于单一方法，联合反演通过交叉梯度耦合、岩

石物性约束等手段强化了结构一致性，如在复杂地

质模型中，电磁与重力、磁法数据的联合反演能更

精确恢复异常体边界，相较单独反演可降低围岩假
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异常干扰达 30%以上（闫政文等，2020；张镕哲

等，2019）. 研究显示，电磁与地震数据的联合反

演在盐岩或火成岩发育区可提高构造成像分辨率，

尤其在深部目标体探测中，大地电磁与可控源电磁

数据的互补性覆盖了全深度范围，使反演多解性减

少 40%～50%（张朔宁等，2023）. 然而，多尺度

联合反演仍面临关键挑战，例如交叉梯度项与物性

约束项的权重设置需要精细平衡，非结构网格下的

正则化方法适应性仍需优化（张朔宁等，2023）.
实验验证表明，联合反演在丘陵、山地等地形复杂

区域的电阻率估算误差比单一反演降低约 25%，且

通过多参数融合技术可直观展示地下结构特征（张

镕哲等，2019）. 人工智能算法与传统方法在电磁

法多尺度联合反演中可实现高效的数据处理和高精

度的反演结果. Wang K等（2023）提出了一种基于

联合学习的多尺度特征融合网络（ feature  fusion
network, MFF Net），利用神经网络的稳健非线性

拟合能力有效地优化目标函数，通过在不同采样尺

度上对地震和电磁数据进行耦合，提高反演的可靠性. 

3.4    多模态数据集成与实时监测

多模态地球物理数据集成与实时监测在提升地

下模型的精度和反演效率方面发挥着至关重要的作

用. 地球物理反演面临的挑战之一是如何有效集成

来自不同数据源和不同分辨率的多模态数据，如地

震、重力、磁力、电阻率等，并准确提取地下物理

属性. 为了解决这一问题，研究者们采用了多模态

数据集成的先进计算方法，包括并行化、高性能计

算和深度学习等技术 .  Del  Razo  Gonzalez和 Yut-
sis（2023）提出了一种用于重力和磁力数据的 3D
联合反演方法，该方法通过并行计算提高了大规模

多模态数据集成的效率. 该方法显著减少了计算时

间，尤其适用于矿产、石油等大规模地质勘探领域，

能够同时处理来自不同数据源的多模态信息 .
Alyaev和 Elsheikh（2021）提出了一种多模态概率

反演方法，基于深度神经网络实现了对不同类型地

球物理测井数据的实时地层反演，避免了传统方法

中的模式崩溃，能够结合多个数据源进行更加精准

的预测. Liu等（2023）开发的物理信息神经网络模

型，结合地震和电阻率数据，利用多模态数据集成

提高了 CO2 封存监测的精度，并有效量化了模型

中的不确定性. 随着监测技术的进步，实时监测和

数据融合成为趋势，将时间信息引入到联合反演中

可以实现对动态过程（如火山活动、地震前兆等）

进行实时成像. Blewitt等（2006）使用全球定位系

统 GPS数据确定地震的规模和海啸潜力. Dong等
（2011）使用全天候合成孔径雷达（SAR）遥感数

据，以及在早期应急阶段提供地震灾害信息，助力

于野外勘测、灾害评估和震后重建. Wang等（2018）
利用大地测量和地震波形数据的联合反演，推断出

地震期间地层的滑动分布和破裂带演化 .  Si等
（2024）引入了地震学的基础模型（SeisCLIP），
在预训练期间通过对比学习，分析地震波谱的多模

态数据及相应的局部和全局事件信息. 监测技术融

合联合反演可以充分发挥联合反演算法稳定、准确

度高等技术优势，为地质灾害的预警和预测提供技

术支撑. 这些研究展示了如何通过多模态数据集成

技术，在不同领域中提升地球物理反演的精度和效

率，特别是在实时监测和大规模地质勘探中，能够

结合多种数据类型，提供更为准确的地下结构表征. 

3.5    井中数据联合反演

井中数据能为反演提供关键岩石物理参数（如

电阻率、孔隙度、饱和度）的实测约束，显著提升

模型可靠性. 例如，联合激发极化（IP）数据与水

力参数反演，可校正传统岩石物理模型的经验参数

偏差（Römhild et  al.,  2024）；测井数据与地震数

据的协同反演能够实现储层参数（如孔隙度、饱和

度）的逐层对比，将储层表征的准确性提高

20%～40% （Shahin et al., 2022）. 在煤层底板水害

监测领域，“井-地-孔”联合微震与电法数据反演

技术成功实现了采动破坏带的三维精细定位（靳德

武等，2020）；在油气藏开发中，流体-变形联合

反演通过整合井流数据与地表形变监测数据，使储

层参数的不确定性降低 50%以上（Jha et al., 2015）.
此外，空-地-井重力梯度联合反演技术可将纵向分

辨率提高 30%以上，并通过多源数据融合降低模

型多解性（张显等，2024）. 这些案例表明，井中

数据联合反演技术能够为地质灾害预警和资源勘探

提供更可靠的、更精细的动态模型支撑.
综上，井中数据联合反演核心优势在于充分利

用井中数据贴近目标的高分辨率特性，结合地面及

航空数据的广域覆盖能力，显著提升纵向成像精度

并降低模型多解性；同时，井中实测的岩石物理参

数为反演提供直接约束，优化储层表征与复杂地层

分层能力. 该技术在多物理场协同、智能算法驱动

下，可实现对采动破坏、流体运移等动态过程的高

效监测，为深部资源勘探、地质灾害预警及地下工
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程安全提供精准支撑，推动地质探测从静态解析向

动态实时响应跨越. 

4    结　论

地球物理反演本身具有很强的非唯一性，单一

地球物理观测数据反演结果往往具有较大的模糊性，

无法满足高精度的探测需求. 电磁数据与其它地球

物理数据联合反演为提高地下成像精度提供了有效

手段. 目前的研究表明，不同的地球物理场对地下

岩石物理属性的敏感度不同，多种观测数据的联合

反演能够实现信息融合，优势互补，获得更加可靠

的地下成像结果. 各种联合反演方法目前已在相关

领域发挥积极作用，但仍存在计算复杂度高、对数

据质量依赖性强、先验信息和模型正则化应用不合

理等问题，需要在优化算法、数据处理和模型表达

等方面进一步改进. 随着高性能计算和人工智能技

术的进步，未来的联合反演将聚焦多物性耦合、深

度学习、贝叶斯不确定性分析、多尺度反演等研究

领域，向自动化、实时化和高分辨率方向发展. 此
外，井中数据联合反演通过整合多源信息，突破单

一探测方法的局限性，将成为提升地下空间探测精

度的关键技术. 期待联合反演方法的不断进步能提

升对地下复杂构造的刻画能力，提高地球物理探测

精度与可靠性.
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