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Abstract: The magnetotelluric (MT) method is a core technology widely used in geophysical exploration and
commonly used in geological surveys, resource exploration and geodynamic research. However, MT data are sus-
ceptible to complex noise, including nonlinear and non-stationary noise, which significantly reduces data quality
and interpretation accuracy. Although traditional denoising methods (such as sparse representation and wavelet
transform) can improve the quality of some data, they have limitations such as complex parameter adjustment and
insufficient robustness when dealing with diverse noise types. In order to solve the above problems, this paper pro-
poses an innovative MT data denoising method based on inverse autoencoder and channel attention mechanism.
The inverse autoencoder enhances the ability to capture complex signal features through the process of dimension-
ality increase and dimensionality reduction, achieving efficient signal-to-noise identification and signal fitting; the
channel attention mechanism further improves denoising accuracy by dynamically adjusting the weight of feature
channels. On this basis, an end-to-end deep learning framework is designed to process MT data in complex noisy
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environments. Experimental results show that this method exhibits superior denoising performance under a variety

of noise conditions. It is significantly better than traditional methods in indicators such as correlation coefficient

(CORC), normalized root mean square error (NRMSE) and signal-to-noise ratio (SNR); in addition, in the analysis

of apparent resistivity-phase curve and electromagnetic field polarization direction, the method in this paper shows

higher robustness and consistency. This shows that the method in this paper can effectively improve the quality and

interpretability of MT data and provide reliable technical support for geophysical exploration.
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Table 1

Comparison of TCN and CNN models in fitting MT signals
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Table 2 Comparison of TCN and CNN models in MT signal noise recognition
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Fig. 7 Polarization directions of the noisy measurement points before and after denoising. (a) The polarization directions of the elec-

tric field and (b) the magnetic field of the original measurement point data. (c) The polarization directions of the electric field

and (d) the magnetic field of the measurement point data after denoising by the autoencoder method. (¢) The polarization

directions of the electric field and (f) the magnetic field of the

measurement point data after denoising by the proposed method
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Fig. 8 Comparison of apparent resistivity-phase curves before and after denoising at the measured site KJQ203A
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