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摘要：大地电磁（MT）法是一种广泛应用于地球物理勘探的核心技术，它常用于地质调查、资源勘探和地球动力学研

究. 然而，MT数据容易受到复杂噪声的干扰，这些噪声包括非线性和非平稳噪声，这显著降低了数据的质量和解释的准确

性. 传统的去噪方法，如稀疏表示和小波变换，虽然能够在一定程度上改善数据质量，但在应对多样化的噪声类型时，存在

调参复杂、鲁棒性不足等局限性. 为了解决这些问题，本文提出了一种基于逆自编码器和通道注意力机制的创新MT数据去

噪方法. 逆自编码器通过升维和降维过程，增强了捕捉复杂信号特征的能力，实现了高效的信噪识别与信号拟合；通道注意

力机制通过动态调整特征通道权重，进一步提升了去噪精度. 在此基础上，设计了一个端到端深度学习框架，用于处理复杂

噪声环境中的 MT数据. 实验结果表明，该方法在多种噪声条件下均表现出优越的去噪性能. 在相关系数（CORC）、归一化

均方根误差（NRMSE）和信噪比（SNR）等指标上显著优于传统方法；此外，在视电阻率-相位曲线和电磁场极化方向分析

中，本文方法展示了更高的鲁棒性和一致性. 这表明，本文方法能够有效提高MT数据的质量和可解释性，为地球物理勘探

提供了可靠的技术支持.
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Abstract: The magnetotelluric (MT) method is a core technology widely used in geophysical exploration and
commonly used in geological surveys, resource exploration and geodynamic research. However, MT data are sus-
ceptible  to  complex  noise,  including  nonlinear  and  non-stationary  noise,  which  significantly  reduces  data  quality
and  interpretation  accuracy.  Although  traditional  denoising  methods  (such  as  sparse  representation  and  wavelet
transform) can improve the quality of some data, they have limitations such as complex parameter adjustment and
insufficient robustness when dealing with diverse noise types. In order to solve the above problems, this paper pro-
poses  an  innovative  MT data  denoising  method  based  on  inverse  autoencoder  and  channel  attention  mechanism.
The inverse autoencoder enhances the ability to capture complex signal features through the process of dimension-
ality increase and dimensionality reduction, achieving efficient signal-to-noise identification and signal fitting; the
channel attention mechanism further improves denoising accuracy by dynamically adjusting the weight of feature
channels. On this basis, an end-to-end deep learning framework is designed to process MT data in complex noisy
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environments. Experimental results show that this method exhibits superior denoising performance under a variety
of  noise  conditions.  It  is  significantly  better  than  traditional  methods  in  indicators  such  as  correlation  coefficient
(CORC), normalized root mean square error (NRMSE) and signal-to-noise ratio (SNR); in addition, in the analysis
of apparent resistivity-phase curve and electromagnetic field polarization direction, the method in this paper shows
higher robustness and consistency. This shows that the method in this paper can effectively improve the quality and
interpretability of MT data and provide reliable technical support for geophysical exploration.

Keywords: magnetotelluric  signal  denoising;  deep  learning;  inverse  autoencoder;  channel attention  mecha-
nism
 

0    引　言

大地电磁（Magnetotellurics, MT）法是一种重

要的地球物理勘探方法，广泛应用于地质调查

（Ajithabh et  al.,  2020; Ren and Kalscheuer,  2020）、
矿产资源勘探（Yin et  al.,  2016; Yu et  al.,  2022）、
地震和火山活动监测 （Larsen et al., 1996）以及大

陆动力学研究（Danda et al., 2020）等领域. 然而，

由于MT数据中常常包含较多的噪声信号，严重影

响了数据的质量和解释的准确性，因此对MT数据

的去噪处理显得尤为重要.
传统的MT数据去噪方法，如稀疏表示（Zhang

et al., 2022a）、经验模态分解（Cai and Chen, 2015）
和小波变换（Garcia and Jones, 2008）等，尽管在

一定程度上能够改善数据质量，但往往存在调参复

杂（Aharon et al., 2006; Trad and Travassos, 2000）、
难以处理非线性和非平稳噪声（Tang et al., 2018;
Wu and Huang, 2009）等问题. 近年来，深度学习技

术的发展为 MT数据去噪提供了新的思路. 首先，

深度学习技术在解决传统方法的调参问题方面（Li
et  al.,  2020）展现出显著优势 . 进一步，Zhang等
（2022b）通过建立卷积残差网络，利用深度学习

的识别和信号拟合能力改善了噪声问题，避免了参

数选择的困扰 . Li  G等（2023）提出了一种名为

IncepTCN-SISC的强噪声消除方法，该方法引入了

时间卷积网络（ temporal  convolutional  network,
TCN），结合 Inception块创建了一个新型深度神

经网络（DNN）模型 IncepTCN，并结合字典学习

进行噪声消除，说明了 TCN在 MT时序信号去噪

中的可行性. Li J等（2023）还提出利用卷积神经

网络（ convolutional  neural  network,  CNN）进行

MT信号的去噪处理，该研究验证了 CNN在 MT
信号去噪中的有效性.

许多模型结构都通过自编码器（Autoencoder,
Hinton and Salakhutdinov, 2006）作为构建基础，通

过学习数据的低维表示来提取其主要特征，在许多

研究中都展现出良好的去噪表现. 然而，传统自编

码器结构在处理复杂信号时存在一些局限性. 它们

在降维过程中可能会丢失部分重要信息，尤其是对

于高频成分的恢复能力较弱. 相比之下，逆自编码

器（inverse autoencoder）在MT数据的处理上具有

显著的优势. 逆自编码器通过先升维再降维的过程，

能够更好地捕捉信号的复杂特征. 升维步骤使得模

型在高维空间中提取更多细节信息，然后在降维过

程中有效地压缩和保留这些信息. 由于 MT信号包

含大量的低频和高频成分，逆自编码器的升维过程

可以更好地分离和提取这些成分，从而在去噪的同

时保留更多的有效信号. 这使得逆自编码器在处理

复杂的MT信号时，能够比传统自编码器更有效地

提高信噪比和信号恢复质量.
除了逆自编码器的能力外，近年来通道注意力

机制（ channel  attention,  CA）（Woo  et  al.,  2018）
也被广泛应用于增强模型的特征提取性能. CA机制

通过计算每个通道的全局信息，动态调整通道权重，

从而聚焦于最具信息量的特征，抑制噪声并保留有

效信号. 在MT信号去噪中，CA机制有效提高了信

噪识别精度和信号恢复效果. Li等（2024）进一步

将 CA集成到时间卷积网络（TCN）中，验证了其

在MT数据去噪中的显著优势.
基于此，本研究提出了一种基于逆自编码器和

通道注意力机制的大地电磁信号去噪方法用于 MT
信噪识别和信号拟合. 该逆自编码器结构结合了逆

自编码器和通道注意力机制的优点，通过逆自编码

器对MT数据中的有效信号进行拟合，并利用通道

注意力机制增强特征提取的精度，从而有效去除噪

声信号，保留更多的有效MT信号.
同时，MT领域缺乏可以验证处理方法有效性

的干净数据集. 在本研究的方法验证实验中，本文

引入了 Wang等（2023）提出的一种基于正演建模

合成的 MT时间序列. 其通过正演建模获得给定模
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型的电磁响应，并模拟天然场源的极化随机性，生

成了标准的 MT时间序列. 这些合成数据为研究相

关方法提供了可靠的验证基础.
本文首先介绍本研究的方法原理. 然后，通过

实验验证，评估了该方法的去噪效果. 实验结果表

明，本文研究的方法在保留 MT有效信号的同时，

有效去除了噪声信号，显著提高了数据的质量，

为MT数据的精确解释提供了有力保障. 

1    方　法

自编码器的基本结构由编码器（encoder）和

解码器（decoder）两部分组成，主要用于数据的

降维和特征提取. 编码器将输入数据压缩到低维表

示，而解码器则将低维表示还原为原始数据. 通过

最小化输入数据与重建数据之间的差异，自编码器

可以有效地提取数据的主要特征. 逆自编码器与传

统自编码器的结构相反，其编码器部分首先对数据

进行升维，以获取更多的特征信息，然后解码器再

对其进行降维操作. 这种结构能够更好地捕捉信号

的复杂特征，尤其是在去噪任务中，逆自编码器能

够更有效地去除噪声，同时保留更多的有效信号.
而通道注意力机制是一种增强网络特征提取能

力的方法. 其基本思想是通过引入注意力机制，动

态调整每个通道的权重，从而突出对任务更为重要

的特征. 具体来说，通道注意力机制通过全局平均

池化和全局最大池化获取每个通道的统计信息，随

后通过一系列的全连接层和激活函数生成每个通道

的注意力权重，并将这些权重应用于原始特征图上，

以增强对有效特征的关注.
因此，在本研究中提出了一种基于逆自编码器

和通道注意力机制的MT数据去噪方法，主要分为

信噪识别和信号拟合两个部分，其整体流程图如

图 1所示. 为了验证本文所提出的方法，首先进行

了信号拟合的对比实验. 利用 Wang等（2023）提

出的合成MT时间序列构建了含噪训练数据集和含

噪验证数据集，样本量分别为 500 000和 100 000.
同时，利用时间卷积网络（TCN, Lea et al., 2016）
和卷积神经网络（CNN, O'Shea and Nash, 2015）进

行训练和验证，结果如表 1所示. 表 1展示了上述

网络分别在自编码器结构和逆自编码器结构下的

MT信号拟合任务中的训练性能，包括训练集损失、

验证集损失以及训练时间的对比.
表 1显示，逆自编码器在大大减少了模型训练

成本的同时，还增强了模型对MT信号的还原拟合

能力. 进一步地，与 TCN相比，CNN模块更适应

逆自编码器，具有更强的拟合能力，同时训练耗时

也更少. 因此，通过 CNN模块建立逆自编码器，并

应用通道注意力机制作为残差结构加入模型. 根据

表 1所示，在逆自编码器结构的基础上，加入通道

注意力残差结构后，模型在相同耗时下，拟合效果

进一步增强. 为了进一步验证该结构的鲁棒性，我
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图 1      整体去噪流程图

Fig. 1    Overall denoising flow chart
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们将同样的对比实验应用于信噪识别中，结果如

表 2所示. 表 2显示，加入通道注意力残差结构后，

模型在信噪识别任务中也表现出了优越的性能. 观
察表 2发现，其结果与表 1显示结果基本吻合. 结

合表 1和表 2体现了逆自编码器在处理MT信号处

理方法的优越性和本文提出的方法的可行性. 同时，

根据表 1和表 2得到结果最优的 [128, 256, CA in
res, 256, 128]模型结构如图 2所示.

 
 

表 2    TCN和 CNN模型对MT信号信噪识别的对比

Table 2    Comparison of TCN and CNN models in MT signal noise recognition
 

模型 训练集损失 验证集精准度/% 训练时间/s

（各模型均训练20轮） TCN/CNN TCN/CNN TCN/CNN

自编码器

[256, 128, 128, 256] 0.227/0.240 88/93.1 63 860/8 240

逆自编码器

[128, 256, 256, 128] 0.223/0.221 89/93.5 63 860/8 240

CNN

逆自编码器 + 通道注意力

[128, 256, CA in res, 256, 128] 0.200 94.9 8 240

训练参数配置
CPU：Intel i9-13900KF；GPU：Nvidia GeForce GTX 4090；

学习率：0.000 1；损失函数：CrossEntropy
 
 

2    实　验

为了验证提出的基于逆自编码器和通道注意力

机制的 MT数据去噪方法，基于 Wang等（2023）
提出的合成 MT时间序列，分别对 Ex、Ey、Hx、
Hy四条通道构建了含噪训练数据集和含噪验证数

据集，样本数分别为 400 000和 100 000. 噪声类型

基于 Li J等（2023）的研究进行构建，具体形态如

图 3所示. 建立数据集时，去噪结果的好坏也与片

段数据集输入大小和样本重叠率有关，根据 Ji等
（2024）的研究，将数据集输入大小和重叠率分别

设置为 256和 75%. 进一步地，对四条通道的原始

干净数据进行加噪处理，再分别应用本文提出的方

法和以 CNN为基模型构建的自编码器模型进行处

理. 通过时域波形、定量分析、视电阻率-相位曲线

以及极化坐标，对方法进行了对比验证.
首先，对 Ex通道的时域降噪结果与原始数据

和加噪后数据进行比较分析，结果如图 4所示. 由
图 4a可见，与原始数据对比，自编码器处理的去

噪结果在黑色虚线框中仍有明显噪声影响. 这显然

是由于在识别过程中对该噪声片段造成了误判. 而
在本文提出的逆自编码器方法去噪结果中，并未出

现此现象，说明提出的方法在一定程度上提升

了 CNN模型在MT信号上的信噪识别精度. 进一步

观察图 4b发现，在拟合信号方面，与自编码器去

噪结果相比，提出的方法的拟合结果与原始信号

更加接近，大大提升了自编码器对MT信号的拟合

精度.

 

表 1    TCN和 CNN模型对拟合MT信号的对比

Table 1    Comparison of TCN and CNN models in fitting MT signals
 

训练集损失 验证集损失 训练时间/s

（各模型均训练20轮） TCN/CNN TCN/CNN TCN/CNN

自编码器

[256, 128, 128, 256] 0.000 9/0.000 4 0.004 3/0.000 4 88 580/14 420

逆自编码器

[128, 256, 256, 128] 0.000 7/0.000 3 0.001 5/0.000 4 82 400/12 360

CNN

逆自编码器 + 通道注意力

[128, 256, CA in res, 256, 128] 0.000 2 0.000 2 12 360

训练参数配置
CPU：Intel i9-13900KF；GPU：Nvidia GeForce GTX 4090；

学习率：0.000 01；损失函数：MeanSquareError
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此外，本文还针对不同噪声强度下的去噪效果

进行了深入分析. 图 5a展示的是一个阶跃噪声，它

的噪声强度由强到弱，又因为去噪的时窗小于噪声

周期，所以将阶段性地对该噪声进行去噪，这也为

研究噪声强度提供了条件，噪声前端噪声强度高，

末端噪声强度低，由此来反应不同噪声强度条件下

网络的去噪效果. 图 5b所展示的是各方法去噪后的

结果，不难发现，越低的噪声强度对去噪模型的挑

战较大，尤其在噪声强度较低的时段，传统自编码

器模型的识别和去噪效果有限. 自编码器在去噪过

程中能够在信号强度较强的前段有效地识别并去除

噪声，但在处理阶跃噪声末端时，去噪效果明显下

降，未能有效抑制较弱的噪声. 而提出的方法通过

精确辨识不同强度的噪声，能够更有效地去除各个

阶段的噪声，特别是在噪声强度较低的区域，表现

出明显的优势. 整体而言，本文提出的方法在去噪

效果上显著优于自编码器，能够更精确地恢复信号

的真实特征.
通过上述时域对比，可以直观地观察到本文提

出的方法大大提升了自编码器在MT信号中的信噪

识别能力和拟合能力 . 同时，我们使用相关系数

[CORC, 公式（1）]、归一化均方根误差 [NRMSE,
公式（2） ]和信噪比 [SNR, 公式（3） ]等指标

（Wang et al., 2017）定量评估 Ex通道上的去噪结

果，以全面分析去噪性能. 其结果如表 3所示，对

比分析表明，自编码器的去噪效果并不理想，而结

合逆自编码器和通道注意力机制后，去噪性能明显

提升，体现了本文方法优越的去噪能力.

CORC =

N∑
i=1

(xi− x̄)(yi− ȳ)√√
N∑

i=1

(xi− x̄)2
N∑

i=1

(yi− ȳ)2

(1)
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Fig. 2    Model structure diagram
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NRMSE = 100×

√√
N∑

i=1

(yi− xi)/N

xmax− xmin
(%) (2)

SNR = 10log10

N∑
i=1

x2
i

N∑
i=1

(xi− yi)2

(dB) (3)
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x y N

x̄ ȳ

xmax xmin

式中， 表示原始干净数据， 表示去噪数据， 表

示时间序列的整个长度.  和 表示数据的平均值，

和 表示数据的最大值和最小值.
基于原始大地电磁数据和经两种方法去噪后的

时域波形，计算了去噪前后的视电阻率-相位曲线，

如图 6所示. 其中，视电阻率-相位曲线采用SSMT2000
软件内置的稳健阻抗估计方法计算的. 图 6展示了

不同噪声分布下，采用稳健估计方法得到的视电阻

率-相位曲线与原始含噪时间序列的对比. 结果表明，

自编码器结构的 CNN去噪方法虽然降低了部分中

低频噪声对视电阻率-相位曲线的影响，但仍无法

对复杂大地电磁信号进行有效去噪. 相比之下，本

文提出的方法得到的曲线更加平滑，尤其是在中频

范围内，效果显著. 这表明，将逆自编码器结构替

代自编码器并加入通道注意力机制，大大增强了

CNN的信噪识别能力和信号拟合能力，提高了去

噪性能.
通过对电阻率-相位曲线和时域曲线的分析，

本文探讨了加噪测点的极化方向. 图 7展示了该测

点在 0.047 Hz处的电磁场极化方向. 图 7a中高度集

中的极化方向（以方块标记）表明原始电磁场数据

中存在明显的电磁干扰. 后续子图 7c和 7d分别给

出了采用自编码器方法去噪后数据的电场和磁场的

极化方向，仍然表现出集中现象. 相反，图 7e和

 

表 3    CORC、NRMSE 和 SNR 的比较

Table 3    Comparison of CORC, NRMSE and SNR
 

数据（Ex） CORC NRMSE SNR/dB

加噪后的数据 0.092 2 1.841 7 −22.716 6

自编码器去噪结果 0.523 3 0.213 4 −3.996 6

本文提出方法去噪结果 0.854 3 0.070 2 5.661 6

 

频率/Hz 频率/Hz

相
位
/(
°)

相
位
/(
°)

相
位
/(
°)

相
位
/(
°)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

102
100

101

102
100

101

102
100

101

102
100

101

102

101 100 10−1 10−2 10−3 102

−100

0

100

−100

0

100

−100

0

100

−100

0

100

101 100 10−1 10−2 10−3

ρxy
ρyx

ϕxy
ϕyx

视
电
阻
率
/(Ω

·m
)

视
电
阻
率
/(Ω

·m
)

视
电
阻
率
/(Ω

·m
)

视
电
阻
率
/(Ω

·m
)

图 6      对加噪测点去噪前后的视电阻率-相位曲线比较 . （a）原始数据的视电阻率曲线；（b）原始数据的相位曲线；

（c）加噪数据的视电阻率曲线；（d）加噪数据的相位曲线；（e）自编码器去噪结果的视电阻率曲线；（f）自编码

器去噪结果的相位曲线；（g）本文方法去噪结果的视电阻率曲线；（h）本文方法去噪结果的相位曲线

Fig. 6    Comparison of apparent resistivity-phase curves before and after denoising the noisy measuring point. (a) Apparent resistivity
curve of original data; (b) Phase curve of original data; (c) Apparent resistivity curve of noisy data; (d) Phase curve of noisy
data;  (e)  Apparent  resistivity  curve  of  autoencoder  denoising  result;  (f)  Phase  curve  of  autoencoder  denoising  result;
(g) Apparent resistivity curve of denoising result of this method; (h) Phase curve of denoising result of this method
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图 7f中采用本文方法去噪的结果显示极化方向分

布更加均匀，表明噪声抑制效果更好.
在后续分析中，本文加入了实测测点 KJQ203A

（位置 :  Lat  26:15:389N,  Lon  099:16:540E），并对

其视电阻率-相位曲线进行了分析. 该测点的情况如

图 8所示. 在图 8中，对于测点 KJQ203A，原始视

电阻率曲线在中频段显著下降，伴随着畸变带内的

误差线增大. 然而，低频范围相对不受影响. 此外，

相位曲线在 0.141 Hz频率点出现严重的突增. 根据

图 8观察发现，自编码器的去噪结果不理想，不仅

未能有效去除噪声，反而破坏了原始的视电阻率-
相位曲线. 这种现象主要源于自编码器在处理复杂

电磁信号时的局限性，其对噪声和有效信号的识别

区分能力不足，这也进一步导致对中低频段信号的

拟合不准确. 而本文提出的方法，通过使用逆自编

码器和通道注意力机制进行噪声识别和信号拟合，

显现出有效的去噪能力. 

3    结　论

本文提出了一种用于大地电磁数据去噪的方法，

该方法基于逆自编码器和通道注意力机制，并通过

实验验证了其有效性. 与传统自编码器方法相比，

逆自编码器通过升维和降维的过程，能更有效地捕

捉信号的复杂特征，从而有效去除噪声并保留更多

的有效信号. 同时，通道注意力机制进一步提升了

特征提取的精度. 实验结果显示，该方法在 MT数

据的时域波形、视电阻率-相位曲线以及极化方向

的实验中均表现出明显优势. 与传统自编码器结构

相比，该方法不仅在去噪效果上更为出色，还在模

型训练时间和资源消耗上具有一定优势，增强了自

编码器模型的鲁棒性和适应性.
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图 7      加噪测点去噪前后的极化方向. 原始测点数据的（a）电场和（b）磁场的极化方向. 自编码器方法去噪后测点数据的

（c）电场和（d）磁场的极化方向. 本文提出方法去噪后测点数据的（e）电场和（f）磁场的极化方向

Fig. 7    Polarization directions of the noisy measurement points before and after denoising. (a) The polarization directions of the elec-
tric field and (b) the magnetic field of the original measurement point data. (c) The polarization directions of the electric field
and  (d)  the  magnetic  field  of  the  measurement  point  data  after  denoising  by  the  autoencoder  method.  (e)  The  polarization
directions of the electric field and (f) the magnetic field of the measurement point data after denoising by the proposed method
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图 8      实测测点 KJQ203A去噪前后的视电阻率-相位曲线比较

Fig. 8    Comparison of apparent resistivity-phase curves before and after denoising at the measured site KJQ203A
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