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摘要：航空重力异常向下延拓的本质是求解第一类 Fredholm方程，属于不适定性的问题. 稳定高精度向下延拓方法一直

以来都是该领域的研究热点. 为抑制边缘效应和提升计算效率，分别对所用数据进行扩边和快速傅里叶变换处理. 为增大向下

延拓距离、提高稳定性和延拓精度，利用模拟重力异常数据和实测航空重力数据对比分析了积分迭代法、Tikhonov正则化迭

代法、Barzilai-Borwein法、迭代最小二乘法和半迭代方法、改进的共轭梯度法向残差法等六种向下延拓方法. 结果表明：在

数据没有噪声的理想情况下，Barzilai-Borwein法的收敛速度最快，且初始延拓均方误差值低，延拓精度高，优势明显. 迭代

最小二乘法不够稳定. Tikhonov正则化迭代方法在达到延拓稳定前，经历了误差增加的状态，且初始均方误差值较高，而其

余的几种方法延拓效果类似较为一般. 在模拟数据中添加噪声后，改进的共轭梯度法向残差法，对噪声的抑制效应最好. 且该

方法在实际数据向下延拓的过程中，能够实现稳定向下延拓，延拓精度优于其他五种延拓方法.
关键词：航空重力数据；向下延拓；频率域；共轭梯度法向残差法；积分迭代法
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Abstract: The essence of the downward continuation of airborne gravity anomalies is to solve the first kind of
Fredholm integral equation, which is an ill-posed problem. Stable and high-precision downward continuation meth-
ods have always been a research hotspot in this field. This research has been conducted on data expansion to sup-
press edge effects and enhance computational efficiency through the use of the fast Fourier transform. To increase
the depth of downward continuation, improve stability, and enhance continuation accuracy, six downward continu-
ation  methods—the  integral  iterative  method,  Tikhonov  regularization  iterative  method,  Barzilai–Borwein  (BB)
method,  iterative  least  squares  method,  semi-iterative  method,  and  conjugate  gradient  normal  residual  (CGNR)
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method—were comparatively analyzed using simulated and actual airborne gravity anomaly data. The results indi-
cated that the BB method has the fastest convergence rate under the ideal condition of no noise in the data, with a
low initial mean square error of continuation and high accuracy, thus showing a clear advantage. The iterative least
squares method is insufficiently stable. The Tikhonov regularization iterative method produces an increase in error
before reaching a stable continuation state, and it has a relatively high initial mean square error with a continuation
effect that is generally similar to that of the other methods. After adding noise to the simulated data, the improved
CGNR  method  showed  the  best  noise  suppression  effect.  Moreover,  this  method  is  capable  of  achieving  stable
downward continuation in the process of actual data continuation, with a continuation accuracy that is superior to
that of the other five methods.

Keywords: airborne gravimetric data; downward continuation; frequency domain; conjugate gradient normal
residual method; integral iterative method
 

0    引　言

航空重力向下延拓是将航线高度处的重力异常

数据延拓到大地水准面或地面的过程（侯重初 ,
1982; Jekeli, 1981; Kern et al., 2003; Sjöberg, 2003）.
目前多采用球外 Poisson积分法、正则化算法、积

分迭代法、梯度法、最小二乘配置法、点质量延拓

方法、直接代表法、球内 Dirichlet解等方法向下

延拓.
一般而言，向下延拓方法可分为空间域和频率

域两种. 频率域向下延拓因子表现出了高通滤波器

的特性，高频噪声会引起较大的震荡，稳定性低，

能稳定向下延拓 3至 5倍点距；空间域延拓方法则

具有计算效率低的局限性. 徐世浙（2006）提出了

积分迭代法将起伏面上的实际位场投影到水平面上

获得水平面初始值，用积分方法计算起伏面上的场

值. 用起伏面的实测场值与计算值的差值对水平面

位场校正，经过反复迭代，直到起伏面实际值与计

算得到的值误差小到满足精度要求，该方法计算效

率较快，精度较高. 在此基础上，刘东甲等（2009）
将其进行改进，在频率域中进行迭代，该方法迭代

收敛且更加简单快速. 张志厚（2013）通过相关系

数法求解已知场和未知场的相关系数的 Fred-
holm积分方程，在空间域中实现了位场的向下延

拓方法，并通过 Krylov子空间的方法求解向下延

拓问题，延拓效果较好. 陈欣等（2018）引入了基

于广义交叉验证方法的 Tikhonov正则化方法，该

方法基于全局协方差模型建立航空重力数据与地面

重力数据的协方差关系，改善了协方差矩阵的病态

性，抑制噪声在延拓过程中的扩大 . 刘晓刚等

（2018）提出了一种新的改进泊松积分迭代法的延

拓模型，修正了传统 Poisson积分离散化误差给延

ν

拓模型带来的病态性影响，同时也抑制了延拓模型

本身的病态性. 伍丰丰等（2020）提出了半参数核

估计和正则化方法结合的逆泊松延拓方法，该方法

对于病态性改善方面具有一定效果，且在缺少外部

数据时能保持很好的延拓精度 . 徐新强和赵俊

（2020）介绍了一种多参数正则化方法，以均方误

差最小为目标函数，设计了选取正则化参数的迭代

算法，向下延拓结果稳定可靠. Pitonák等（2020）
提出了卫星和航空重力数据的谱域向下延拓方法，

满足了不规则的地面区域的需求. 黄谟涛等（2022）
提出了向上延拓积分严密改化模型，提出了补偿传

统改化模型的修正公式，可提高重力异常向上延拓

的计算精度. 赵予菲和柯宝贵（2022）指出迭代的

延拓方法具有延拓稳定的优势. 本文将采用共轭梯

度法向残差法（conjugate  gradient  normal  residual
method,  CGNR）、积分迭代法、Tikhonov正则化

迭代法、Barzilai-Borwein法、迭代最小二乘法、

半迭代 方法进行实验，并从延拓精度、计算效率、

误差抑制效应等方面进行对比，实现航空重力异常

数据稳定高精度向下延拓. 

1    向下延拓技术方法
 

1.1    空间域向下延拓基本原理

空间域内，离散的重力异常数据进行向上延拓

的基本公式为（陈欣等，2018）：

u0 (x,y) =
h

2π

w +∞
−∞

w +∞
−∞

uh (ζ,η)[
(x− ζ)2+ (y−η)2+h2

]3/2 dζdη

(1)

u0 (x,y) uh (ζ,η)式中： 为上层重力场的空间坐标； 为

下层重力场的空间坐标；h为延拓的高度，假设上
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层重力位场的高程为 0，即 z=0，则其位场为：

u (x,y,z)|z=0 = u0 (x,y) (2)

下层重力位场为（z轴方向竖直向下，z=h >0）：

u (x,y,z)|z=h = uh (x,y) (3)

将式（1）表示为褶积的形式，为方便计算，将向

上延拓公式表示为褶积的形式：

u0 (x,y) = uh (x,y)∗φ (x,y) (4)

φ (x,y)为核函数可以表示为：

φ (x,y) =
h

2π · (x2+ y2+h2) 3
2

(5)

u0 (x,y)

φ (x,y) uh (x,y)

向下延拓则是对式（4）求逆的过程，在已知

和 的情况下，对 进行求解的过程. 

1.2    改进的共轭梯度法向残差法

共轭梯度法向残差法基于 Krylov子空间方法

向下延拓，对噪声有良好的抑制作用（李春光和徐

成贤，2001）. 该方法最初用于解决大型法方程的

求解问题，1996年由 Saad给出其迭代形式，大量

实验证明，CGNR法具有良好的稳健性（Nachti-
gal  et  al.,  1992;  Saad,  1988,  1996;  Saylor and   Smo-
larski, 1991）.

u0 (x,y) uh (x,y)

u0 (x,y) uh (x,y)

u0 (x,y)

是航空重力数据作为上层重力场，

是地面数据作为下层位场，通过 求解

就是向下延拓的过程.  数据通常都是离散的

格网化数据，为了便于处理，将式（1）进行离散

化，得到如下公式：

u0 (m∆x,n∆y) =
1

2π

N∑
j=1

M∑
i=1

h ·∆x∆y ·uh (i∆x, j∆y){
[(m− i)∆x]2+

[
(n− j)∆y

]2
+h2

} 3
2

(6)

∆x ∆y式中： 、 分别为 x、y方向上的取样间距；M、

N为 x、y方向上的取样总数，可将式（6）简化表

示为：

AX = B (7)

式中：B、X含义如下：

B = {u0 (1,1) ,u0 (2,1) , · · · ,u0 (M,N)}T

X = {uh (1,1) ,uh (2,1) , · · · ,uh (M,N)}T

A为 L×L（L=M×N）维的对称的向下延拓系数矩

阵，矩阵 A表达式为：

A (m,n, i, j)=
1

2π
· h ·∆x∆y{

[(m− i)∆x]2+
[
(n− j)∆y

]2
+h2

} 3
2

(8)

CGNR法的迭代过程为：

X(0) = B R(0) = B− AX(0) Z(0) = ATR(0)步骤 1：令 ， ， ，

P(0) = Z(0)

W(0) = AP(0)步骤 2：

αk =

∥∥∥Z(k)
∥∥∥2

2∥∥∥W(k)
∥∥∥2

2

步骤 3： ，k为迭代次数

X(k+1) = X(k)+αk P(k)步骤 4：
R(k+1) = R(k)−αkW(k)步骤 5：
Z(k+1) = ATR(k+1)步骤 6：

βk =

∥∥∥Z(k+1)
∥∥∥2

2∥∥∥Z(k)
∥∥∥2

2

步骤 7：

P(k+1) = Z(k+1)+ βk P(k)步骤 8：
A

AX = B
AT AX = ATB

A

在延拓过程中，式（7）中 矩阵条件数较大，

因而在求该问题解的向下延拓过程中将导致数据中

极小的误差产生较大的震荡（陈龙伟等，2007）.
因此对该问题进行改进，将求解 的问题转

化为求解 的 CGNR法 . 通常情况下，

由于系数矩阵 （L行×L列）规模较大，空间域内

计算耗时较长（赵予菲和柯宝贵，2022），因此本

文采用频率域的方法进行改进. 在向下延拓前应对

其进行扩边处理，从而降低边缘效应的影响，减小

误差提高延拓精度. 频率域的 CGNR法具有很高的

计算效率，相同计算机条件下，在计算 200×200维
度的矩阵时，延拓时间约为 10 s，且随着矩阵维度

增加，延拓时间变化不大，和空间域延拓过程相比

计算时间显著降低.
A

A AT

由公式（7）可知，同对称的系数矩阵 相乘

可看作对该矩阵进行向上延拓处理. 因此，对迭代

步骤中同 及 相乘的矩阵，可看作对矩阵向上延

拓的过程，向上延拓是可以进行稳定求解的，因此

也间接保证了 CGNR法延拓过程的稳健性. 

1.3    迭代的延拓方法
 

1.3.1    积分迭代法

对式（5）进行傅里叶变换，得到式（9）（张

志厚等，2021）：

U0(u,v) = Uh(u,v)ϕ(u,v) (9)

u、v ϕ(u,v)

φ(x,y)

式中： 分别为 x、y方向的波数； 为式

（5）中 的傅里叶变换.

ϕ(u,v) = e−h
√

u2+ v2 (10)

空间域迭代过程为:

un(x,y) = u(n−1)(x,y)+ st
[
u0(x,y)−u(n−1)(x,y)×φ(x,y)

]
(11)
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这是一种逐次逼近法，st为迭代步长，一般取步

长 st=1. 

1.3.2    Barzilai-Borwein法

Barzilai-Borwein法（简称 BB法）是对积分迭

代法的一种完善，是一种变步长的积分迭代法. BB
法是一个特殊的最速下降法（肖庭延等，2003），
其迭代过程为（张志厚等，2021）：

un+1(x,y) = un(x,y)+ tn pn (12)

tn =
(pn)T (pn)

(pn)T A (pn)
(13)

pn = u0(x,y)− Aun(x,y) (14)

tn
A

由两者的迭代公式可见，BB法针对积分迭代法的

迭代步长 st进行了改进，积分迭代法式（11）中

的迭代步长 st是一个固定的值，而 BB法的迭代步

长 由差值向量经计算得到，更贴合实际数据情况，

步长更为合理. 式中矩阵 为延拓系数矩阵，迭代

步长 st一般取值为 1，如果取值过小会限制迭代的

速度，取值过大则会限制迭代的精度，因此通过每

次迭代的差值向量计算其迭代步长，可以很好地提

高迭代速度和延拓精度. 

1.3.3    Tikhonov正则化迭代

经过傅里叶变换的向下延拓因子对航空重力数

据的高频噪声具有显著的放大效应，迭代的正则化

方法，可以通过引入正则化因子，解决这种不适定

的问题. 正则化因子的引入主要解决在延拓过程中

延拓深度较大时延拓精度低的问题（陈欣等，2018；
冯淑萍和高延民，2016；周浩等，2022）.

波数域 Tikhonov正则化法公式为：

U0(u,v) =Φ(u,v)
[
1−

(
α

Φ(u,v)−2+α

)n]
Uh(u,v) (15)

α式中 为正则化参数，波数域正则化法公式同波数

域的积分迭代法的区别在于引入了正则化因子，在

延拓深度较大时，仍可以保持较好的延拓精度. 

1.3.4    迭代最小二乘法

n pn

pn rn = Aω0

迭代最小二乘法将向下延拓的问题转化成了最

小二乘问题，是一种通过梯度下降法对最小二乘问

题进行迭代求解的一种方法. 迭代最小二乘法中的

迭代步长有和正则化因子相似的作用，具有抑制高

频噪声的效果（陈龙伟等，2011）. 取航空重力异

常值为初值进行迭代， 为迭代次数， 为计算的

残差值，通过逐次计算 ，并引入 计算其

λ = −⟨rn, pn⟩
⟨rn,rn⟩

⟨·, ·⟩迭代步长 （ 表示求向量内积），进

而迭代求解. 

ν1.3.5    半迭代 方法

ν

ν

半迭代方法也被称为多项式加速方法，该方法

和前面介绍的迭代方法不同，半迭代方法不仅需要

前一次迭代的计算值，还需要前面几次迭代过程的

信息. 对 Landweber推导后可见其迭代序列的收敛

速度是相当慢的，而半迭代 方法是在 Landweber
迭代法的基础上进行改进得到的，是对 Landwe-
ber法的加速迭代. 其中 方法使得残差随迭代减小，

每步迭代，充分利用前两步信息，构造出加速

Landweber方法（陈龙伟等，2007）.

ν

ν

ν

在 Landweber方法的基础上，选择合适的余项

多项式可以显著提高多项式迭代的利用效率，而使

用太多的前面迭代信息则会导致计算时内存不足或

计算效率变低，因此选择利用前两步的信息构造出

算法. 在寻找合适的余项多项式的推导过程中，证

实了存在依赖于 的常数使得半迭代点列的逼近效

果更好. Brakhage（1987）构造了利用前两步迭代

格式的 方法，因此该方法是一种基于半迭代方法

的 方法（肖庭延等，2003）. 

2    模型实验与分析
 

2.1    理论模型设计

为对比上述各个方法的延拓优势，采用模拟数

据进行实验. 模拟实验采用点质量方法，在实验区

域内设置 5个点质量源，分别模拟距离地球表面

2 km和 1 km两个高度的重力异常格网值，格网数

为 301×301，点位间隔约为 50 m. 以 2 km高度处的

重力异常作为模拟的航空重力数据即上层位场进行

延拓，1 km处的重力异常格网作为模拟的地面数

据即下层位场，即模拟实验向下延拓约 20倍点

距，验证向下延拓的效果. 点质量源参数设置如表 1
所示. 

2.2    无误差模型数据的向下延拓分析

实验采用上述模型模拟得到的重力异常数据向

下延拓. 对比分析不同延拓方法的计算效率和延拓

精度. 表 2为未加入误差的重力异常向下延拓情况

对比，实验采用均方误差（mean square error, MSE）
和平均相对误差（mean relative error, MRE）两种
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标准来衡量延拓精度，由于每次迭代会得到 MSE
和 MRE值，因此在迭代过程中统计了 MRE和

MSE的最小值作为稳定迭代后的结果. 由于边缘效

应，六种方法的延拓结果在边缘处存在较大误差，

并且迭代过程无法收敛，导致延拓效果较差. 因此

本文对该模型进行扩边 . 分别考察了三种情况下

CGNR法向下延拓的精度：①对矩阵 X、R、P进

行扩边（因其需要同 A或 AT相乘，后文用 V统称

这些矩阵），B不进行扩边；②对 B扩边，V不扩

边；③V、B同时扩边. 其它五种方法不涉及变量 V，
仅对 B扩边. 实验还对比了几种延拓方法的计算耗

时和延拓重力异常数据均值的情况.

ν

表 2计算耗时以循环 100次计，实验过程中使

用的硬件环境：Intel(R) Core(TM) i7-10750H CPU
@ 2.60 GHz 2.59 GHz. 由表可知，在未对数据加入

噪声的情况下，上述实验方法均保持了良好的延拓

精度和计算效率. 其中积分迭代方法的延拓精度较

高，计算速度较快. 积分迭代法、Tikhonov正则化

迭代法和 BB法的最小均方差和平均相对误差相同，

且延拓精度较高. 迭代最小二乘法和半迭代 方法的

延拓精度稍低.
表 3为未加入误差的重力异常场向下延拓精度

对比，显示对不同变量进行扩边所能达到的最高

精度.

 

表 1    质量源模型参数设置

Table 1    Parameter settings of the mass source model
 

质量源序号 东经/（°） 北纬/（°） 埋深/km 点源质量/kg

1 151.040 24.040 0.808 1.850×1013

2 151.050 24.105 0.756 1.800×1013

3 151.075 24.075 0.767 1.950×1013

4 151.100 24.038 0.756 1.850×1013

5 151.100 24.119 0.808 −1.850×1013

 

表 2    延拓计算耗时及精度对比

Table 2    Comparison of time and accuracy of extension calculation
 

延拓方法 计算耗时/ms 最小均方误差/mGal
最小平均

相对误差/mGal
2 km高度处重力

异常数据均值/mGal
1 km高度处重力
异常均值/mGal

延拓重力异常
数据均值/mGal

积分迭代法 4 962 0.014 0.160 6.141 7.154 7.183
Tikhonov正则化迭代 10 130 0.014 0.160 6.141 7.154 7.183
BB法 5 663 0.014 0.160 6.141 7.154 7.177
迭代最小二乘法 11 735 0.019 0.213 6.141 7.154 7.198

ν半迭代 方法 8 029 0.017 0.190 6.141 7.154 7.193

共轭梯度法向残差法 9 183 0.015 0.169 6.141 7.154 7.113

 

表 3    对不同变量进行扩边及延拓精度对比

Table 3    Comparison of the accuracy of edge extension for different variables and downward continuation
 

扩边对象 最优扩边数 最小均方误差/mGal 最小平均相对误差/mGal 最优循环次数/次

共轭梯度法向残差法

V 85 0.017 0.189 100
B 300 0.028 0.312 44

V+B 50 0.019 0.211 100

频率域积分迭代法

B 100 0.014 0.160 67

Tikhonov正则化迭代法

B 100 0.014 0.160 67

BB法

B 100 0.014 0.160 40

迭代最小二乘法

B 75 0.018 0.203 100

ν半迭代 方法

B 200 0.023 0.264 71
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图 1      延拓精度与迭代次数的关系. （a）共轭梯度法向残差法对 V扩边，不同扩边数的均方误差随迭代次数变化情况；

（b）共轭梯度法向残差法对 B扩边，不同扩边数的均方误差随迭代次数变化情况；（c）共轭梯度法向残差法对 V
和 B扩边，不同扩边数的均方误差随迭代次数变化情况；（d）积分迭代法不同扩边数的均方误差随迭代次数变化情

况；（e）Tikhonov正则化迭代法不同扩边数的均方误差随迭代次数变化情况；（f）BB法不同扩边数的均方误差随

迭代次数变化情况；（g）迭代最小二乘法不同扩边数的均方误差随迭代次数变化情况；（h）半迭代 方法不同扩边

数的均方误差随迭代次数变化情况；（i）选取较好的延拓效果，对比六种情况均方误差随迭代次数变化情况；

（j）对比六种情况平均相对误差随迭代次数变化情况

Fig. 1    Relationship between continuation accuracy and iteration number. (a) Conjugate gradient normal residual method (CGNR) for
V expansion, the mean square error with different expansion numbers as a function of the number of iterations; (b) CGNR for
B expansion, the mean square error with different expansion numbers as a function of the number of iterations; (c) CGNR for
V and B expansion, the mean square error with different expansion numbers as a function of the number of iterations; (d) Inte-
gral  iteration  method,  the  mean  square  error  with  different  expansion  numbers  as  a  function  of  the  number  of  iterations;
(e)  Tikhonov  regularization  iteration  method,  the  mean  square  error  with  different  expansion  numbers  as  a  function  of  the
number of iterations; (f) BB method, the mean square error with different expansion numbers as a function of the number of
iterations; (g) Iterative least squares method, the mean square error with different expansion numbers as a function of the num-
ber of iterations; (h) Semi-iterative method, the mean square error with different expansion numbers as a function of the num-
ber of iterations; (i) Selecting the better extrapolation effect, comparing the mean square error as a function of the number of
iterations for the six cases; (j) Comparing the average relative error as a function of the number of iterations for the six cases
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由图 1、表 3可见六种延拓方法在没有误差的

情况下，BB法的延拓精度较高，收敛速度快，达

到稳定精度需要迭代次数较少.
图 2为模拟重力异常 2 km和 1 km高度处的重

力场等值线图，对图 2中左图向下延拓，延拓结果

同右图进行对比.

ν

图 3分别为积分迭代法、Tikhonov正则化迭代

法、BB法、迭代最小二乘法、半迭代 方法和

CGNR法的等值线图. 与图 2中右列图对比可以分

析延拓效果均比较良好，重力异常等值线图分布相

似，保持着良好的延拓效果.
图 4给出了六种方法的均方误差随迭代次数的

变化关系曲线. BB法的收敛速度最快，迭代 15次
即呈现了稳定的延拓趋势，且初始延拓均方误差值

较低，延拓精度较高，具有非常明显的优势. 迭代

最小二乘法在延拓过程中，呈现了阶梯状下降的趋

势，延拓不够稳定. Tikhonov正则化迭代方法在趋

于稳定延拓前，经过了误差增加的状态，且初始均

方误差值较高，延拓效果较为一般. 

2.3    噪声模型数据的向下延拓分析

为了更真实地模拟实际数据的情况，在上述无

误差模型数据基础上加入噪声，对比不同延拓方法

对误差的抑制作用和延拓效果. 对模型数据添加随

机噪声，分析各种延拓方法的延拓效果，表 4为加

入噪声（待延拓数据标准差的 5%）的重力异常场

向下延拓精度对比，其中 CGNR法循环 100次，

积分迭代法、Tikhonov正则化迭代和 BB法循环

20次 . 图 5给出了 5%噪声情况下模拟数据等值

线图.
由图 6、表 5可见六种延拓方法在加入误差的

情况下，CGNR法对 V扩边的延拓精度较高，收

敛速度快.

ν

加入噪声前后的实验对比，积分迭代法对于噪

声的抑制作用较差. 随着迭代次数的增加，积分迭

代法的误差没有呈收敛的趋势. 误差达到最小值后

会急剧变大，为了直观显示误差趋势，迭代截取了

前 10次计算结果. Tikhonov正则化方法、BB法也

呈大致相同的趋势，如图 7所示，上述三种方法的

实验结果等值线图的噪声点分布不集中，噪声点分

布较为杂乱，误差较大. 而在添加噪声的实验中迭

代最小二乘法、半迭代 方法、CGNR法具有很好

的延拓效果，平均相对误差和均方误差均呈收敛趋

势，三种方法对误差具有良好的抑制效应，图中噪

声点集中分布在图像边缘，延拓结果快速准确. 由
表 5结果可见，在 5%噪声情况下，CGNR法的延

拓精度最高，且延拓较为稳定，计算效率最高，趋

于收敛的速度最快，结果如图 8所示.
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ν

结合加入误差前后的实验情况，可以分析得到

迭代最小二乘法、半迭代 方法、CGNR法均保持

了良好的延拓情况，其中 CGNR法的延拓情况最

为平稳，趋于稳定速度快，且延拓精度最高. 由延

拓等值线图可以分析，CGNR法对噪声的抑制效应

ν

更好，误差分布较为集中. 由于实际数据是存在噪声

的，因此理论上在后续使用实际数据进行重力数据向

下延拓的过程中，采用迭代最小二乘法、半迭代

方法和 CGNR法三种方法，能得到更好的延拓效果.
以 CGNR法为例，图 9对比加入不同噪声情

况下，均方误差随迭代次数的变化情况. 由图可以

看出随着噪声的逐渐加大，趋于稳定的均方误差值

也逐渐增大，但整体都能保持着良好的收敛效果和

延拓精度，CGNR法对噪声的抑制效应显著. 

3    实际重力数据实验与分析

实际航空重力数据位于北美洲，测区整体呈长

方形. 测区航空重力数据、地面重力数据分布的角

点坐标如表 6所示.
观测的航空重力数据由横向和纵向航线组成，

测区平均飞行高度在 5 500 m左右，该区域地面平
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表 4    噪声为 5%的向下延拓精度对比

Table 4    Comparison of the accuracy of downward continuation with 5% noise added
 

扩边对象 最优扩边数 最小平均相对误差/mGal 最小均方误差/mGal 最优循环次数/次

共轭梯度法向残差法

V 85 0.030 0.341 62
B 300 0.044 0.498 22

V+B 50 0.041 0.467 19
频率域积分迭代法（迭代20次）

B 75 0.139 1.530 5
Tikhonov正则化迭代法（迭代20次）

B 50 0.142 1.620 6
BB法（迭代20次）

B 100 0.132 1.472 3
迭代最小二乘法

B 75 0.032 0.356 40
ν半迭代 方法

B 100 0.034 0.383 29
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Fig. 5    Contour map of simulated data under a 5% noise condition
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图 6      延拓精度与迭代次数的关系（噪声为 5%）. （a）共轭梯度法向残差法对 V扩边，不同扩边数的均方误差随迭代次数

变化情况；（b）共轭梯度法向残差法对 B扩边，不同扩边数的均方误差随迭代次数变化情况；（c）共轭梯度法向

残差法对 V和 B扩边，不同扩边数的均方误差随迭代次数变化情况；（d）积分迭代法不同扩边数的均方误差随迭代

次数变化情况；（e）Tikhonov正则化迭代法不同扩边数的均方误差随迭代次数变化情况；（f）BB法不同扩边数的

均方误差随迭代次数变化情况；（g）迭代最小二乘法不同扩边数的均方误差随迭代次数变化情况；（h）半迭代 方

法不同扩边数的均方误差随迭代次数变化情况；（i）选取较好的延拓效果，对比六种情况均方误差随迭代次数变化

情况；（j）对比六种情况平均相对误差随迭代次数变化情况

Fig. 6    Relationship between continuation accuracy and iteration number (5% noise). (a) Conjugate gradient normal residual method
(CGNR) for V expansion, the mean square error with different expansion numbers as a function of the number of iterations;
(b) CGNR for B expansion, the mean square error with different expansion numbers as a function of the number of iterations;
(c) CGNR for V and B expansion, the mean square error with different expansion numbers as a function of the number of iter-
ations; (d) Integral iteration method, the mean square error with different expansion numbers as a function of the number of iter-
ations; (e) Tikhonov regularization iteration method, the mean square error with different expansion numbers as a function of
the number of iterations; (f) BB method, the mean square error with different expansion numbers as a function of the number of
iterations; (g) Iterative least squares method, the mean square error with different expansion numbers as a function of the num-
ber of iterations; (h) Semi-iterative method, the mean square error with different expansion numbers as a function of the num-
ber of iterations; (i) Selecting the better extrapolation effect and comparing the mean square error as a function of the number
of iterations for the six cases; (j) Comparing the average relative error as a function of the number of iterations for the six cases
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均高度在 1 500 m左右，即需要向下延拓 4 000 m

左右. 向下延拓深度在 30倍点距以内，即重力数据

向下延拓格网总点数为 200×200. 实际数据区域范

围如表 6所示，观测阶段飞行高度平稳，能够满足

 

0 20 40 60 80 100

迭代次数/次
0 20 40 60 80 100

迭代次数/次

0 20 40 60 80 100

迭代次数/次
0 20 40 60 80 100

迭代次数/次
(i) (j)

(g) (h)

(e) (f)

0 5 10 15 20

迭代次数/次
0 5 10 15 20

迭代次数/次

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

均
方
误
差
值

/m
G

al

50
75
100
150
200
300

1

2

3

4

5

6

7

8

均
方
误
差
值

/m
G

al

50
75
100
150
200
300

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

均
方
误
差
值

/m
G

al

50
75
100
150
200
300

0

1

2

3

4

均
方
误
差
值

/m
G

al

50
75
100
150
200
300

0

1

2

3

4

5

6

均
方
误
差
值

/m
G

al

积分迭代法
Tikhonov 法
BB 法
迭代最小二乘法
半迭代 ν 方法
CGNR

0

0.1

0.2

0.3

0.4

0.5

平
均
相
对
误
差
值

/m
G

al 积分迭代法
Tikhonov 法
BB 法
迭代最小二乘法
半迭代 ν 方法
CGNR

0 20 40 60 80 100

迭代次数/次
(c) (d)

0

1

2

3

4

5

6

7

均
方
误
差
值

/m
G

al

30
50
75
100
200
300

0 5 10 15 20

迭代次数/次

1.5

2.0

2.5

3.0

3.5

4.0

4.5

均
方
误
差
值

/m
G

al

50
75
100
150
200
300

图 6　（续）

Fig. 6　(Continuations)
 

表 5    5%噪声情况下的延拓计算耗时及精度对比

Table 5    Comparison of time and accuracy of extension calculation under 5% noise
 

延拓方法 计算耗时/ms
最小平均

相对误差/mGal

最小均方

误差/mGal

航空重力

异常数据均值/mGal

地面重力

异常数据均值/mGal

延拓重力

异常数据均值/mGal

积分迭代法 5 180 0.140 1.533 6.140 7.154 7.234

Tikhonov正则化迭代 9 981 0.148 1.687 6.141 7.154 7.243

BB法 5 458 0.133 1.474 6.140 7.154 7.183

迭代最小二乘法 11 683 0.033 0.368 6.140 7.154 7.203

ν半迭代 方法 10 372 0.033 0.373 6.141 7.154 7.193

共轭梯度法向残差法 8 780 0.032 0.363 6.143 7.154 7.132
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向下延拓数据要求. 此外，在对航空重力数据延拓

前应进行高度改正，使其位于同一高度面上. 为此，

进行了正常重力值的计算，得到重力扰动值，再经

过大地水准面高改正得到重力异常值.

图 10为经过航空重力数据预处理并格网化之后

的航空重力异常和地面重力异常等值线图. 该区域

整体趋势呈现西南地区重力异常值较大，东北地区重

力异常值偏小且实验区内区重力异常变化较为平缓.
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图 7      延拓等值线图

Fig. 7    Downward continuation contour map
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图 8     不同延拓方法延拓精度与迭代次数的关系

Fig. 8   Relation between accuracy and iteration number of dif-
ferent continuation methods
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Fig. 9   Relation  between  continuation  accuracy  and  number  of
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采用上述六种方法对图 10左图中航空重力异

常实际数据向下延拓，各个方法的延拓情况如图 11
所示，延拓结果对比右侧地面重力异常数据.

表 7给出了实际数据向下延拓结果，几种方法

均能实现航空重力向下延拓. 在六种延拓方法中，

积分迭代法的计算效率最高，但精度最低，BB法、

ν

A AX = B AX(0) ATR(0)

AP(0)

Tikhonov正则化迭代法和迭代最小二乘法延拓精度

稍低，且三种方法的延拓结果图中，均有一定的阶

梯状压缩，整体延拓不够平滑，没能很好地反映地

面重力异常情况. 半迭代 方法具有较高的延拓精度

且计算效率较高. CGNR法可以保持良好的延拓精

度，且整体保持良好的延拓平滑程度和延拓稳定

性. 相比于其他方法几种，CGNR法的计算效率优

势不明显. 分析表明，CGNR法在迭代处理中多涉及

到带有系数矩阵 的 计算，如 、 、

等，由此导致了频率域的效率降低. 

4    总　结

本文从向下延拓的基本原理出发，使用共轭梯

度法向残差法（CGNR法）、频率域积分迭代法、

 

表 6    实验区角点的经纬度坐标

Table 6    Longitude and latitude coordinates of corner points in
the experimental area
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图 10      航空和地面实际重力数据等值线图

Fig. 10    Contour map of airborne and ground gravity data
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图 11      延拓等值线图

Fig. 11    Extension contour map
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ν

Tikhonov正则化迭代法、Barzilai-Borwein法、迭

代最小二乘法和半迭代 方法六种延拓方法向下延

拓，分别对模拟数据和实际航空重力数据延拓，对

比各个延拓方法的特性.
（1）根据空间域位场向下延拓公式可知，在

空间域进行向下延拓计算的耗时较多，因此，将空

间域的向下延拓转化至频率域进行计算，显著提高

向下延拓的计算效率.

ν

（2）模拟数据中，各方法延拓精度、计算效

率等均相差不大，且均具有良好的稳健性，其中

Barzilai-Borwein法的延拓误差收敛最快，延拓精

度也较高. 对模拟数据加入 5%的噪声后，积分迭

代法、Tikhonov正则化方法和 BB法呈大致相同的

趋势，抗噪效果不佳，误差先减小后呈发散趋势，

延拓不稳定. 而噪声实验中迭代最小二乘法、半迭

代 方法、CGNR法保持了很好的延拓效果，等值

线图的噪声点分布集中，较为平滑；平均相对误差

和均方误差均呈收敛趋势，说明其对噪声具有良好

的抑制效应.
（3）模拟实验中，CGNR法的延拓精度较高，

对噪声的抑制效应较好，在实际数据延拓中，延拓

稳定且延拓精度高，但其计算效率较低. 但是使用

频率域的延拓方法将这一劣势的影响降低，在对

200×200的矩阵向下延拓实验中，CGNR法耗时低于

10 000 ms. 由此可见，CGNR法在处理航空重力数

据向下延拓的问题时具有延拓精度高、延拓稳健性

强、收敛速度较快的优点，具有一定优越性.
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