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Abstract: As a vibrant and ever-evolving planet, the Earth has a dynamic evolution process spanning more
than a dozen orders of magnitude from seconds (e.g., seismic rupture) to millions of years (e.g., mantle convection).
Dynamic changes in underground media, spanning from minute to year scales, have been captured and analyzed
based on seismic wave. This paper systematically summarizes the methods and applications of monitoring tempor-
al changes of underground media based on seismic waves. We introduce traditional temporal variation monitoring
methods like Vp/Vg ratio, shear wave splitting, coda Q value, and receiver functions, along with novel time-lapse
seismic tomography. The new method focuses on repeated signals from active sources, repeat earthquakes, and am-
bient noise correlation, enhancing seismic velocity measurement accuracy via coda interferometry for underground
medium monitoring. This paper also reviews key applications of seismic temporal changes monitoring, encom-
passing volcanic eruptions, earthquakes, landslides, industrial activities, slow earthquakes, core differential rotation,
rainfall, as well as changes associated with environmental factors such as rainfall and groundwater levels. Lastly,
future prospects for temporal variations of seismic velocity researches are anticipated in observation technology,

data processing, and application domains.
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IR o — BELACE SN AL R T, HEIX L
A ALHE A BT R AL KT M 3K P 4 ) B s AL 1A
LR AR AE 3 AR A AT DASR F B D i U7 2k
17, WMAREM RS (GPS) MFHHKFLIEEI
(InSAR), fe LA I 24 HE 2 SR BT, H
ANRIRUF H AR B FI R FE (Amos et al., 2014;
Bawden et al., 2001; Borsa et al., 2014) . #t R A5 W
JPIRAS A B A A Ty BN &, 77 Hb = R R IX
ALY A AR (Silver et al., 2007), [Kl, Wi
i A 2 S EU AL R TR A SRR I 2
FB.

R BAL RRAE 5 5 A A 5 P R PR 5 )
K. 2 S H00] DU RS S A e, 3630
SEE, WEY . AR REE . LIRS
(Ostrovsky and Johnson, 2001; Riviere et al., 2014) .
T 0 NP AN N A R R AR A (B,
i 2 R T AR A D, W AR TS A I AR M N
JIBURAE, 3T A WA AR ALY B A G
FevE . PG e R 45D (Johnson and Jia, 2005;
Ostrovsky and Johnson, 2001; Riviere et al., 2014) .
WEFRR B, 5 R I B 7 3030 ) U 2 B R
| I B8 AT B A Joid 8 SR A 2 48 gt — 2P 4 9 (Rivi-
ere et al., 2014); 11 FLBGUE /7 A3 A AT 25 FRAR A
R, fiE A A S BIARamR, (REEH5E N
PR R G B T v, DN TTO G 0k Nz 9 40 ) ) AR
4 (Taira et al., 2018) .

FET SIS A A SO IR R, A5G H R UK
FARRFVE, 2 Fh R A o AR A T B AR LK &
TOAPF 9 MR R R R R U A 3 % 1) S SRR
PR AR AN A 1 B T B R R T 2 Rl
FI7E. A OA R T A 45 09 S AR S 2Rk
M. EEHE (2016). FMRILIFAZER (2018)
S M N LRRVR . B AT i
S5 (2021) (RIS RIRERIAT TRt RE ;1 A
R (2015) WA R LR IT RiE . ASCHE
MATF LN RGHAH T I T R R
I R A E L R W R iV S PO = RN 5 IV
FASUSEAT 74, Savhie 17 24 B 7T 34 i)

PRI SR T BE R A T 1.

1 R R T Fe st R o o B I [R) 22
GANPIRES

bR 2 5K AR 2 P T VR U R A I 5 4 B
A1 284k, FETANFEBE AN R R, W] LLR A
NMRIE: —FRFMHIFERGESHES IR &
FENEPEL . BIYIRR. B QE. IS
UL RIS AR 71— EahIR. ERMRE
AN S5 S A OGS B R AS 5 I R T ik

1.1 E%E%

1.1.1 Pkl

BOEEE (Vp/Vs) & H AR 2% 5 Wadati 1
Oki (1933) #& i A 3 T /v BRI 3 7= 27 7
wOBEAH Gl R R R, DARIAVE A
fitt, B G/2 GI0FKN 2 O E F AR F
N 1p DA SC-BEUR BN 22 (o — 1p),  FEXT L ) 2K
A IR BPE L, BRI Vp/Vs=(ts—tp)/tp+ 1,
BEMAF 22 6 B0 W 2 O R R A BON LR 2=
£ 3l (8] A7 J5T 7 2 U8 LU ARRAE R AE A AR e
1988) . V2 WF F0 UL 5% 21 b 7% 1if (1 95 38 b = 5 SRR
({54825, 1975; Whitcomb et al., 1973), {H 45
Ft L AR K B RE T JF A 3B A L R
( Kanamori and Hadley, 1975; McGarr, 1974), il
AN 57515 5 AT e A2 R IR R JE AR 2 2%
5l R, SARMRTIEY B AR 5% (Lindh
etal., 1978) .

112 BIY)r

BYAT 73 2 F R A Fith T A Joid i A8 () L 2T
. B BYAE & ) SRS BT AR RRIN, NSRS
ZERA LA [ AL R, RIERE AN S, T
AR DT 77 1) RO 35 S0 32 B [R) 6 b A J5 2% 1) S
(1) 5 BE AR 7 3 1 A% 4k Bl ( Crampin, 1984;
Crampin and Peacock, 2005; Gao and Crampin,
2004) . H BT YD B 73 200 W 77 1k B W AR 23
MriE (Crampin, 1978). AR EAEHTIE (E R
AT, 1994)
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PR o Hridk o e B T3R5 BT U1 7 RS H ik
W AR AR 7 1) AR R IR B[] 1 7 v e i@ I 4y B E
A1 FE FHAFLEPIAN KT 43 5 1 BT i m R 30 B0k
WsE P BRI RN, BTSRRIk B 2.
TZ BN 22 S 1 R R B 6 uh BN ST 2R BR AT T 12 BT )
BN F PR BU D)3 1 BIEF 2 (Crampin, 1978) .

HH I R H5 73 B2 B 38 e A OC 23 Afr ) B 22 ek 2
FLELT 53 g (P AN B 81 72 15 BT D13 23 2400 7 AR 1Y)
PRI CriAABETE, 1994) Bl
ANTR) 5 57 A [R B 1) ZE SR T AN 7K 5 [l 6 41 (B
B4 AR AL, O R IR T 1A 5 Rk
JT IR AN o, 12 AT T PRI I R IR A =,
B8 J5 1 SH A a EAE ¢ BP0 ] A OC R 4L
FLs RAB R ST o A1 7 BRI SA BT SR A DRI A4 77 1r) 11
TN I REIR (R AR, 1994)

BYTUE 53 2 024k A F T M 000 8 A 5% 1 B
S EEREGIRE (Crampin, 1994; Gao and Crampin,
2004) . T HiRE 2% S T b RE AH 9% 1K 8 U9k o SRR
() S0 38 A8 A B Ji DRI A B, 12 BT D38 I ) 42 3R
AR AT BT T R s Sh MR () AR Ak 5| /S 1 S 2% 3
FEAE IS T ARAY, AN A2 % 1) S 14 A Joi PR 428 i o
[B] )24k (Peng and Ben-Zion, 2005) .

1.1.3 R OfE

Aki fil Chouet (1975) 7EHLUCHUS FIMR % T H2
HTRE QEMME, KMEM O HEWIEES)
PESR A%, Sato (1977) W HAHE kT T8
IE, B TEERENEH TR EEL TR O,
BV 7. ARYE Sato BEAY, 1E— @ HIAIE T K
PRI P AR R A :

A
Fl= loglo[ j:”

2
] K '@ =C(f)-bt-15) (1)

A, A A S BIR KRR, Ac(t) Ui 18] ¢ B
i R 35 7 AR IR, K MR T s 8] ) A% R R 1
C(f) N5 HZA L K 1. fEAH A RE . AH )
T, C) NHEE, BEMNE F)5 - AK)
LR R OIIRTE b {E, HAH LS O, MK R
b=2nflge/ Q. RITT 13 BNZIH X M. O, 1H.

Rk QW vz B T AR X B ot 2 TAE,
VF 2 W 70052 31 5 FRAH DG B R O E ) = AR
1k (Jin and Aki, 1986; Peng et al., 1987) . i#— [
Ve RIL, I O EHEIESI ML (D5 E
4, 2005; Sato, 1986) . Hb7E & 3l i i R A 5 0
(IR I/ A MARBAE), SEM

TRV ZE VR AR AR, HEi s Bk O {E, (EX)
TARKXE, FAiRk QEZRNAEER (HK
155, 2004; ZRARIKSE, 2006; Sato, 1988) .

1.1.4 B %

BRI (RFY 77922 H A iE 78 HhBR Py 346 1
JEREANEE W BB OB s A ke —, BB
FHIZE FR NS 2 &3l R 5 S b= AR ) Ps B Sp #
e SRR 5 56 R 5 M W RS &% V5 R A akde
BBk B 2 A4, BA RIFMIERN SR

(Kind et al., 1996) . Audet (2010) & 55 FH4% 1k
BRI BT 78 b R A B (A1 AR Ak E B2 R B B 2
Sob B ERE R P SV (JRIH)D A SH (B [A)
& (Bostock, 1998), FKH PRI EAE NE
VR R R H, XF SV I SH 73 & AT B, MM
T2 P P R 0 (PRF) . BILRY B A ) e 5 AR
J7 AL HE & AR 48 ;) %5 A1 (Ligorria and Ammon,
1999). Fild fH e 49 Je & A (Audet, 2010) . X
SRALP) RF HEATRE— 25 00 0 A nl 3R 3 F 07 A R
SE R R AR AL RE . B0, Audet (2010) X Park-
field 4B 3T X 3 B3 A A JE U 1 RF 15 T 26 1% %

(PSD), M %LF| PSD 5% & 7£ 2004 4 Parkfield Hh
2 5 3 A%, Porritt 71 Yoshioka (2017) FJ/ P
RS RR T Vo H AR A X AT 1 20 #r, KN
W 7T X T PRF f) PSD /KPR ZEAL, HENE
FI| PRF % 2 BE B (8] (1) 55 35 A8 4k, I 4 W7 X Foh AR 4k
T BE T R R 5 KOl X SRR A B A B 8L/
SRPEE A RN, HUEERKMCRA T 2RO A
A W FBORIE Sk R S A AR L, iR e
iR KA S P I A A o B T 2R % A S g
AR IIARAL,  HHL R KA 7R A Pk 3 i 5 i
Et S 9% K (Kim and Lekic, 2019) .

1.1.5 WG

HRE JE AT UG R W FiHh T A i R TR
. T SR G R b XA [ B A B S e SR A5 1
FERERUARIR ) T 3, W DASRAGHb T 25480 FE (1) 1) (]
AL HFAE (Chiarabba et al., 2009) . 4R, HTHb
TR A 53 AT (AR A B S v B R IR BEATL R 22 IR AE AE
X PR A A5 R B P FEPEA = (Julian and Foulger,
2010) . AL SR # 2 4T BB 1 7 ki i de MR
TR0 222 S FAN [ B B 119 B8] st 22 SR [R] e S 2 A B 4R
XAE— € R RE b 52 BAS [R] I 18] B 70 A A3 50 1Y
520 (Julian and Foulger, 2010) . Qian & (2018)
P T HTWEEN MR (Zhang and Thurber, 2003)
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(I A% 2 HT AR 5 1. " o e 0 T U R AT G T
VAT FH B — A B[] B3 110 1 e 5 ok e e el P AR AR
SR MR B /N IR (] BEAF O T 28 — AN F (] B 1 21 1)
Z2, TR FH AT BT SR A5 P T P55 A 28 R s i 1) B 22 )
B[R AR AL, BT IR — vk, EAAE (2021) fi
F 2 P st 2 X3 & 0 BT iE s B 1 P sl 2656 21 B A2 A
X B A, 7R R YR X ) 2014 EE ) Mg6.5
BRI S SS P OHE AR, Pei 28 (2019)
P T MR NEE R DUk GO T, RN TR
TR B AL, 7 T AR 78 R 1 R A=
AL RN 5 T AT FE.

12 ETEERFESHEE

12,1 =REHES

AV O e 5 9 TR ) AR A 2 IR A R T 5 A AT
T A 5 B AR 5T A V. MR R O B X T kb
AR, AT DL R R R s T R 1 A
SRR ) B 14 AN RS AR A X L T A [
(R R R H T EE MR (Poupinet et al.,
1984). ANTEVJF (Yamamura et al., 2003) ¢ E &
7S H AR HE (Brenguier et al., 2008a) . X = Ff
J7E N EEE SRR A 20, B ER AR
W7 EL T — 2. R AEE B S T~ /i
BAREF LR AT AR R . HIRW a2, &
AIULREZ A SHCN A R BT EEE
5 PRI A1 5T A R A R R v, S A
A A E R >, (PR T AR AL Hb R
T, AT B AR 45 B 0] SE P FORS i MR SE T

HE MR R A TR E, HimE
BAERRIEAAHE, T AH R & ubid &3 RS 5
BB EEAELE (Nadeau et al., 1995) . i# i X} R
GE M FE BERE DS R AR AT A, RS
X R FR Y v AR O R, PR s A
KEAFRME (an 0.8 LA L), BRI LASRISWI DN E
FIESHMER, R AT/ERZZ2EVPHER
iR LA AT, AR SE B T AR LA RS 2 A
JECLHIWIX — RV HE R S AEEE, Fital b
oz 0 1) () R AL 7R A AT AN A B AR I Ao, e
T B € S8 N HERR I B M= (Schaff and Beroza,
2004; Waldhauser and Ellsworth, 2000) .

N LRERIEBUR MG 5 @ BT, HRRER ZIk
s, AL AERYIKEE(ES (Poupinet et
al., 1984; Snieder et al., 2002) . NHEE A T EJH ™

AEREEE S, RATFRFELE R IR R TR BN
TRFEERAENES. HT A LREN&mEES
PE, AEAEXS [F]— & B 7E — € I T8] X 8] Y 3D sk i e
BAE TS, DERICE A E M E S WA T
{55 (Silver et al., 2007; Wang et al., 2020) .

A g R AT AR HARREE,  [RIN Gl L[ E
H 3T 5 I B OQ B TR 5 4% bR ek B0 8L
( Shapiro and Campillo, 2004), [l T ] 3K 5 1% £ |
FaE M EEAES. 7 IREUE S A S S B R
BTG, B et 3RA ) JR 46 M RE 5ok kAT AL 3
(Liu etal., 2014), BEMIREH FMBRA LR, A
XFHIPRE TS, RIARAG A B8 S S AR R
BTG, P — 5 I TE] A 1) EAH DG T 3647 2 i BASR
WU MRS A R AL 3%

122 FETHEEAE 5 RBOE N A& T7 %

TS HEAT I I AR e A FH B AR 5 1 LA I
#l 4> ( Reasenberg and Aki, 1974; Vidale and Li,
2003), {EXMERAGRAG AT SR EE R, it — BT TR B
R R WA I BAEE, HAHH Bk
AR A SO U

BT R IR 1) 1 T2 U A A W U T VR O R T
Wik, 'E i H Poupinet 55 (1984) &, @I
1R 0TR[] B AH S Sk B 38 3 A8 4. Snieder 45
(2002) JakAH 1 RBRES, A HAE RS
R sl & R & i 1) 284k, AR 2 VEALE R TE AL
AERE 752 300 FE AR Ak 1% 7 VR AR B R A B AR AL 2
LISy, WIARXEER AR (dee) 5 AR AR A
(dvv) #EJ, Bldv/v=—dt/t.

BT R E N AN ST E A A
e HAH K (WCC) . E4ihifik (TS). 3
SN (DTW). B3 & Bk (MWCS).
NEH L (WCS) .

P Bl B EAH S<V2E RRTI E vh R O i
( Grét et al., 2006; Mikesell et al., 2015; Snieder,
2006) . MK ik ik, WA A A1 2 T8 B
HH R BRI fe K AB K AEAE FE R AS de b, B
% dr AT 8] 3 471 22 8] PR AR AL d5e KAk, DL
WCC 3 1 % T H B0 38 8l B 1 A2 AN [R] 30 1N 7]
b E S A% dr, S R e 40 E I S AR X A
WHwH de/e, BETTERTS dvv.

J 4 B ARV AR AT A I AW A% de B UL I [ 2
PEBG I RAR B 2 07 V230 0 S A I 4 I T 2k A
—NPIE, MRS5S HPICREERRAL,
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Foag R IR ZR BT B PRz A 2R e B Ayl P AR A
B &= -dt/t=dv/v ( Wegler and Sens-Schonfelder,
2007) .

Mikesell % (2015) I T H T JRE T &E
1) DTW. & B fERLT TS M, (HAERHE
SE IR R -, T2 0 VAR B ANVt i 1) 445 FH T
AR AR 1, RS I e R S AT B A I
% dt.

MWCS #¢:¥]7& HH Poupinet £5 (1984) #gHif,
FH 000 — 0 52 1 5 T IR T BE IR B 1T VR AE
Fg B WCC ¥ & 2. & I & R e Sy T
IR, 5 WCC AL, 54N I w8 #5 /2 £E 08
A RIS, PR AT DA SO 7y H 22

— RNy, ARSI PRI T AR A R A [R] ) A
AT FEE P 9 BBl p T AR R I 4 () B A
Mao &8 (20190 $& i 7 —#f & T /N B3 25 #r
(MCS) [ 5%, BNES N AR . MCS & — 4
RE M, HARGLe (f, 0BT 53 £ AR L i
JG ¢ RIGERMmFS de (1) = o (f,0)/Qnf). 5 He J7 ik
KAk, 8L —de (f,0)/t KR AL S 15 B A R IE
FEARACI B dv/v(f). ZITIEESRAE T B AR A I A B &
SRRSO R E, BATRKI 2R
ey, AT SEILN ARG IR L ) 3 b

ANFE T Bk, TS Al DTW JrikitH
E5E, THRESHGEX B, H o5 Yl B YR
W, HRFNHRNERECR, oM TR
FLSEWE N, BENE A HE L, (HIFESRR%E
FEORESE /N, E T AR Ak BR) 9 B2 AT LA S (4t S8 4 i 20 3R
[F) B R DL B G b 3 e Bh 22 B RS e s MIC'S T8 B 3
ZE THEMRS, HESEAEN, TR
BONMERE, 5T X A FESRE AR

2 LT BRI T A o AR B
W7

A =T FU T A D G TR E
MIBE TR, fEIE N, MRS SRR
P LA FUAS 52 RVE . K HE I R A 5 8] A2 Ak
HREZBEEVIN | B DR e A /N B N S T B 8 3
7 A CRART BRI L MR T
Tk zhSE, IR KA MR HhRE
WAL ZZ e K BB R R PR AR
WRBEEIAF T AR 2T, GIFEm 7Kl

W% A B R R RN, R RE IR TR] O
FIRFrBO AT AR RE M “RAE”, MAERLE
WA Pl R TR s “ KA
W7 N TERER, WA KW R,
Wy TGS “RA” MRIE T, HER
UUIPISAE I S i S A ISR T i

21 SRR HERXAIM TN RE R

JUHEER, BHEZAT— BT A m K LR
U B 1 A0 RT S 1 1) O V. ARATTR T oK B AN R 5
BHOR BEHORPEAT THEF 70 . filan, TLERA

(Mania et al., 2019; Massonnet et al., 1995) B {Hi#}
1% (Fontaine et al., 2014; Peltier et al., 2005) =] DL H
SRR Kl 2K 51 i B AR k. R 2 E LT,
Hi R S BN G 0 A AR AE KRR Z BT (Chouet,
1996; Soubestre et al., 2021) . ZRT0, AIE KL
FRATIE BIRFAEAN ], SR AT R AN AELE (Biggs
et al., 2014; Chaussard et al., 2013; Ebmeier et al.,
2013), XFLRE T IRR HE R AR 26 2

(Brenguier et al., 2008b, 2016) .

2.1.1 TR AR LA A

PR T IRECE B A5 S IR, T 80
MIEE 53 1 72 B 70 K Ll A A 5 IR AR Ak T A
X EL D . Maeda 25 (2015) FI A £ 3h ¥ 78 H A
Sakurajima ‘K LI G5 K784k, W52 3|55 % STk MK R £
[¥iiF[a] 4544 Hirose %5 (2017) MR R FH 2 i T
Wik 5 R Izt AT TR AL, IR
J7VE R G SR B A — 2. M HARSC L E 3R &
Bt WWHEEHEE NELS, SRHMEEEER. &
TR R A OC I i 22 M A i LRI 1] 1 2 —
#& Piton de la Fournaise J< LA 21 (1) 155 & 1if FO 1T IR
HE R E R BE (~0.05%, P 1a) (Brenguier et al.,
2008b), Takano 5§ (2020) 144 M 75 FLAH G (1 B
& W H T Piton de la Fournaise ‘KIS, &
I AR A W] RE R R 2 A R K 2 R 2R A
LSRR AR SR AS B B, an Kl wse% (Mor-
dret et al., 2010; Obermann et al., 2013; Olivier et al.,
2019). ‘K14 (Takano et al., 2017). k1L
B3y (Wu et al., 20200, ‘K11 ZE &l (Donaldson et
al, 2017). HHK I H5E¥ (Hirose et al.,, 2017;
Nishida et al., 20200, &7 7B Kl RS
(7 K Bl Hs 248 85 D AH Ok R, AN J4150 1) 23 )
D353 A0 AT e R — LS B R b o 2 PR e A S
W Liu % (2019) X Kilauea /K 1 DX U508 ) 6 75 %
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SRR RN /33575 (5] B Gerst and Savage, 2004)

(a) Reduction of seismic velocity and temporal change of seismic energy before the eruption of Piton de la Fournaise volcano.

Fig. 1

Seismic energy is calculated from the daily average root-mean-square (RMS) value of the recorded continuous seismic signals,
and shadow areas represent the eruption period (from Brenguier et al., 2008b). (b) The fast anisotropic direction changed
before and after an eruption in 1995-1996 at Ruapehu volcano, New Zealand. The white arrows indicate the direction of the
regional stress field, and the black arrows indicate the direction of the local stress field (from Gerst and Savage, 2004)

BER R4 b b 47 7 0 #r, 45 SRR AE 2018
FEER Z ATAETE A BB AR RRAE SR,
Ja B, 20 KT R 2R b B BRI R BN
W BX . Hotovec-Ellis 25 (2022) A H = 5 b 55 B
T 5 IR R IE S A S K g, R
TERR UK A 350 35 4 i b 7R T RE S AR 1 T )5 218 R B
SR, KIS 2 T B0 A A Rt 2 2 AR R R
HEEE ., W1 2014 4 Piton de la Fournaise ‘X LI
TR AT IRAS 5 F 32 PR A RE R AN 35 (Rivet et
al., 2015), [T 43 593X L8 (5] 3% 1 s e G B T 58
TP R R A SR SE AR, OO IR R R
HEAT SR ARE 1 15 .
2,12 HT & m R T

BT 5 1 7B % 1) S K L i IR M 9

Z4, K 1b 87~ 1 v 2= Ruapehu K111 7E 1995—
1996 4= ) — VR W% & 11 Ji b 7 2% 1) S R U8 7 1) S
EAALHFAE (Gerst and Savage, 2004) . HAl, W%
500 I 2] 5 K g 3 AH OC 1 & ) R 1 0 AR AL
(Savage et al., 2010, 2015), AT TE X Fh A8 A ) [A]
TR I 7 (8] Av AN T3 e PRI RIS 737 /R R T
M A% | Tlisley-Kemp 25 (2018) X 2009 £ 10 H &
2010 4 10 H 3] Dabbahu 2445 B b 52 Hh 7B 2% 11
ST T VAT, SRR B NI R
Bl SR AR, IR L RE % ) St mT
FAHREE R LIS L. £, Mengesha & (2024)
K H B 1% 2R W 7T 2018 4 & 2020 4 1 (7]
Whakaari/White 11125 [ 5 VE AR, 45 RER WX
Tl A8 A ] BB T 5 170 S 1 B T ) PP 238 T AS A2 1 7R
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1
E RGN R ARSI AR L.
BT MR A AR AL T

78Kl X A B AR L T 7C (Titzschkau
etal., 2010) . f¥11, Caudron 2% (2019) FfHE#)
KL T BRI e S B R {E 5 i JT Kawah Tien (IR
JEVE ). Ruapehu fl Tongariro CHiFE %) Kiliig
3, RIEWTR 2 B Hh R g1 n, JERomRal
D] Y by 7% % 98 T O 117 JK 19 < A4 3R 3 11 kil
K. Ardid 55 (2022) XFUEFFR AT, $RH T IGE
P IR A 450 J2 R /K BRI IR ML e e, I
W 3% — KR B I N T 2019 4F Whakaari 155 %2 Bl
I M. J T, Caudron 28 (2021) FIFH Fmg
AIFE T Z B J7 34 Whakaari/White 5 K LT T
BIBERT 7T, HE2 S5 QZ . X HE .
T g RER T KNGS A FER T CF
Fri. R WURID AIRHE

22 SHREMAXAM TN RETMRR

BRARAEAS ] B )AL, FR SRS i ) B A
3

2.1.

22,1 FETHERPEACHT T

F e FE 0 KR ) 7 57 S S AT DO AT 3R 1t
Xof R 8 I g BB RO TR R )RR L % ( Biirg-
mann and Dresen, 2008) . i FEH 2 FE R K E 5|
A FR) 5 Z R B0 M R 2 1 58 PAY £ ) 0 i o e 7
A i IR T TR V). A 35 22 4 20 0 i 28y 1) B T
Me P HOAH OC I 248 LB 9T 3R W] ( Brenguier et al.,
2008a; 18 20, UL 3 ) M 5 d FE AR AL (—0.08%)
ISR [ T3 2 () AR A5 47 R D 2R i PN 0 T R B e
AR M S N R . T B AT b R R LI 4 SR R
XA S PR B VIR, [F) R i i B 2 AR vh A
H A (Sheng et al., 2021) . Okubo % (2024)
W7 2002 4F 2 2022 4 Parkfield #b [X ) 3 B A2
e, DL 7 B A b 2 3 8] 25 22 48 20 i Parkfield b
DX B3 W7 R BAR S FR IS (R AR Ak AE R ZHUE LT,
R A R AR P N R, JFBEE I ) A HERS 1B
WKk 2 (22 #4055, 2023; Brenguier et al., 2008a;
Hong et al., 2017; Illien et al., 2023; Liu et al., 2014,
2018; Meng et al., 2024; Poli et al., 2020; Sawazaki et
al., 2009; FA2%%, 2020; Wang et al., 2019; 47 %55,
2019), 3 E = AR A L AT BE S T o R
S| R BIAS L1/ A 254k (Brenguier et al., 2008a,
2014; Minato et al., 2012; Schaff and Beroza, 2004;
Wang and Shearer, 2019) . #2& M4 4 (Wang

and Shearer, 2019) F1 3 & i /& ( Brenguier et al.,
2014; Nimiya et al., 2017) . XA AR L M504 0,
TESEIG FEE E #7453 1 f#FE (Johnson and Sutin,
2005; Lyakhovsky et al., 1997; Sens-Schonfelder et
al, 2019) . fEf L I 50, Boschelli & (2021)
I FH 1 5 T S R AR R A E A OGS, B T S
2019 4F Ridgecrest i 5E J7 1 AH 5C (1) #1721 FE AR AL,
R IR FE T AR AR KR E b B iR Z B e 1 1)
M 4% 5 5. Cubuk-Sabuncu %5 (2024) ] & VK it
FEWEAAL SHL T IRAR . B R SN R R R AR
FIBACTRAE 73 A, (RIS SF BE 17 /N8 3 46 0 s 4 o e
VRN G5 S, R IR 773 B ) o 4 SR
AAHE, ASESH T ROE R ZE R R, R
508 RE B AH ¢ BB T e 2 [ 7R R BRI 1) 3 22
LA 2R, RN TRVRSLES, v BLLL S 4 )
Sy FERAU A R B2 AR 4L (Tkuta et al., 2002; Tsuji
etal., 2018; Yang et al., 2014), DL K B I 45 14 1) I
[B]2%4f, (Nishimura et al., 2000; Wegler et al., 2006),
ER KSR THF 4 %, T2 1 5 2 Hh = I I b
BRI (] A8 A4 52 1A B B [B) SR AE (1) PR ), 3 B4
1) FH A b AR R MR A DG A AL AR AR R A D ax
BfF 70t 0 % 31 55 Hh 7B AH OC 1 [F] 72 ( Sheng et al.,
2021; Zhouetal.,2023) JKfEJ5784k (Lietal.,2017) .
Merrill 5 (2023) A 552 MR AN S8 5 5 1A
i Haida Gwaii My, 7.8 75, JETHEHMFEM S ¥
AR S N R R 0.16%, T RS
T R B 0.26%~0.39%, B4 AR N AL K
AAER B R e, BRI O 2

222 BT HE R GHEA

JEHT IR FEARAE T 5 K/ R RE A G 1 Hb R 3
VAR AR 4k (Chun et al., 2004; Hirose et al., 2020;
Kelly et al., 2013; %= /& 5§, 2013; Obermann et al.,
2014; Sato, 1986) . Yamamura 5 (2003) f# HJEH
A ERIE RS 5, DU S ARSI AE ¢
(2R A AP A, R T = R R U,
HAESLI AR A R AR BB R, AR F|
5 R REAH G R Ah. PRI SE (2012) FIFHH
B TA AT 1) 2 IR S0 BRI B 5 KA O% 1) 2 TRk
A, F [FEE R0 F ) 1 1 7R S AR R A OC B FE
Ak Tsuji 55 (20220 AJ& T — ks bk o 25 1
RN I o RO 1 1 722 U0 A i 5 o ) B2 AR A
Jiik, R R T I 2000 4 5 2001 4 7E H
A Awaji &S50 RIS I HUR R BN R AR, WS
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AEXHE AR AVIVIY%

0.04

0.06

0.08

0.10
2002 2003 2004

FIFEIRIEPEAS, 456 & IR e, A f
ARCVE 3= 577 1 ) kN B K
223 FETHRRS A R T

b % 1) S e R W R ) 8 1 79 3 B L
AL A R TR, R RE B DA [ ()8 AL 7 (1)
— PRI G, Hb R R BE T I AR W RE S T A A
[E %5 (Johnston and Christensen, 1995) B 5 1
5 #2 (Boness and Zoback, 2004; Hung et al., 2009;
Zatsepin and Crampin, 1997) . =T 8IUI 7%, ¥F
ZW R TAEF USR] 7 5[FE (Tkuta and Yamaoka,
2004; Nakata and Snieder, 2012; Peng and Ben-Zion,
2005; Sawazaki et al., 2018; Takagi and Okada, 2012)
DL 5 E J5 @4 (Hung et al., 2022; Kaproth and
Marone, 2014) AH < 107 - 17) 5% 1484k, Durand
(2011 FIH Gk 8] 0 HhRE 8 50 g 75 BAH Ot
7 2004 45 9 H 28 H My6.0 Parkfield i iZ §i 5 M
BEMAHFAE, &5 SR A T I Bl A0 0 24800 A1 T 1R 1)
AL UK. SaadéSE (2017) FFH B 3N utg T
ST 2008 4E 6 A 13 H HA Iwate-Miyagi 3172
T i T AR A RO B ) A8 4, A I FLAE Hh R | — N
HRIZIARAY, AT ReS5 2807 W 1) A B A L.

2.3 S5iBEEXAH T RTINS
TR FRAT IR, BT R R K

| iR

20

40

% N48W/mm

60

i

80

4 100

M6.0

2005 2006 2007
Ay
B2 IR JE SEH A e JE /R FE X R AR SR AR S RIS B k. #h 2 R th GPS w5 (X 2% 2 A 2 T = )
i S5 =170 (51 3 Brenguier et al., 2008a)
Fig.2 Seismic velocity variations, surface displacements, and tremor activity near Parkfield, California. The curve represents post-
seismic fault-parallel displacements along the San Andres Fault measured by GPS stations (from Brenguier et al., 2008a)

TR E N HAR R F L —, IS SEBLRT IR
MRS RN E R, Bl oA 2oz 5
WA RATDIEE 5, fltn, ETREANAIS
T M A O T E A8 4 (Amitrano et
al., 2007; Tonnellier et al., 2013; Walter et al., 2013);
15 FH 75 57 M 5 HLAH QD7 VR 0K S R I 2R AT 23 7
RIAE 1 IS R T L/ B0 LR A A ) T 45
5 (Larose et al., 2015), 4 Hb 7=y 38 & [% (%

(Mainsant et al., 2012a). H AR FEAH = REH)
F&A% (Fiolleau et al., 2020; i 3), FH KX —aiJk
T T MR A LRG0 386 0 5 B L b B U)o
PR X FPHLEIAE R 1S 2] THER] (Carriére
et al.,, 2018; Dong and Lu, 2016; Mainsant et al.,
2012b, 2015) . AR, RAMFE 7%, B0
X ok W %2 B B L R AT IR I S (Bontemps et al.,
2020; Voisin et al., 2016) .

24 S5TAGERNHERXAIM TN REEMR

BEAE NKAEF= Ik RE, 2= igshilaxt
R A 0 A R A B A I s i, LS B)
(Olivier et al., 2015) A1Hs 4 H 44k 3E N (Hillers
et al., 2015a; Obermann et al., 2015) 52 ) Hb =E I
T F 3PS R AH T 10 A2 (b 5 3 7R i Bh 1 AR 1
(Li et al., 2023); i< H A= 77 A ¢ (1) 384 4% 128 0l
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Fig.3 Daily cross-correlation analysis for HARO-HAR1 sta-
tions. (a) Rayleigh wave velocity changes between 1 and
12 Hz; (b) Cross-correlation (CC) coefficient changes;
(¢) Cumulative rainfall (blue) and air temperature
changes (red) (from Fiolleau et al., 2020)

{19788 Ak S BY )98 3 248K A 1 B ) 28 4k (Baird et
al., 2013; Teanby et al., 2004; Zuo et al., 2018); 7E
5 AR N S b BT A R AT i 53
RBP4 P 3 B0 (R 2k A8 b (Zhu et al.,
2017) . IXECTARIRAE [ 7E /N UASE S FH o 2 T 72
W7V ERER AR T AR S PIRAS T 0, Bl e K
WUAKEE W /N 7K 7 IR S BRI 28 X6 B
YRRk Bl A 3 Y. Planés 2% (2016) Al Olivier %5
(2017) JlThHh A0 52 2] B T Hb R KA A A 53 LB
(AR AL T SO J737) AR Ak, a3k T 5 350 72 ek
AR

25 5B EHEXM TN RETETHR

WEFLRHT, AR AR e ) B KRR AR B (R
PO VR A A BRI RE 51 K M 5T M 08 AR ) M R
( Halpaap et al., 2019; Nakajima and Hasegawa,
2016) . LAk, LRI LR b H 005 2 B AR
ARk, BN, 7 Hikurangi fEh i AL 3% 218 18 5
FF (SSE) RAJE, ERSUBFRIESIHEIN (Shad-
dox and Schwartz, 2019), X5 b #g B Hh 52 i3 fF Al
) TR FE B (Wang et al., 2022; Zal et

al., 2020); fE Cascadia fiff 7 5 510U L I 2 ETS
HAFRTJE 3 L RF 214k (Gosselin et al., 2020) .
R R VR Z MG R S EAR PG AR S I AR )
—NFTREJE AL s T VAR BRI (1 AN 3% K 1 % da
RESWREIAT =4/ SSE HE7K (Wang et al., 2022) .
Nakajima fil Uchida (2018) #} %5 T 4R M1 i 3% 5
PEE H AR H X AR A AR R ST R R
Hb B 2 B AR AR OGP, WEAE T AR P
IS P A AR (AR 4L, S5 RRE, fERL—
SRR TR N, AR HEK = R R AE, B
i & SSE (Ito and Nakajima, 2023; Nakajima and
Uchida, 2018) . Ito F Nakajima (2024) ] 874
WA Z4%E H A Kanto Hu[X S YR AL 25 1) S 14 %*ﬁf@
B, ZEIRW (A 7E SSE 2 Ja s, MBS Loy i)
S-S RAE R E G TN, RSP 3R AE AR BE I [R] AR AR
/N, B Sheng &5 (2022) #3471 — TUE 50 R
i YBT3 R 1V R AR A O
ARG (I 4D, T8 4k R 7 K b = 7 vk
RS DU BRI, 7 A A A b U 7 2 ) 3

2.6 FRERIAAERNEFE X EIN BRESERR

oK A R B b R 0T ) B A M R (AR A
ZUESE T HUBR A% BE I 1] A2 AL B A7 /E - (Song and
Richards, 1996; Vidale et al., 2000; Yang and Song,
2020a; Zhang et al., 2005) . X A i 7] 45 4k 7772 5 Fil
R NAZIOZ IR . A% T SR AR K B
R DA A% 22 T T A DA DR X A N TR AR AR YR N AZ R A
# (Wang and Vidale, 2022; Yang and Song, 2020b),
Jedt— B T W E R % (Yang and
Song, 2022) . #xit, Yang Fl Song (2023) Z3Hr T
20 4l 90 AWM E B E R, KILFTH Z i
B B E I AR R R AR AR I 5 4R LR
A, JE R WY AR B B AE I B ) B T
Wang %5 (2024) R BN HZ M 2003 4F 3] 2008 41
WER IR BERE , AR5 M\ 2008 4 F] 2023 4 DA
RSB =AM (S5 . WA KEE
RN D AR BT AR B o i 3 T R T A AR S
SR AL, HET S B N AR B A AE (Wen,
2006) . 7E [ —HF 5L T AT BAH T JE 1 Jie e ik A A
—EREE BN T 2 e )RR (Mikinen and
Deuss, 2011) . Yao % (2019) @ i€ % #i ¥ Sand-
wich B & 0 H S Y 5 b 2R AT 1 7= N 1] 28 4k FY RE
B AR R BB E T A e AR,
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Fig. 4 (a) Cross-correlation waveform versus time. Color shades represent travel time df measurements relative to long-term average.
(b) The df measurements and the coherence of wavelet during the study period. The black dashed lines represent linear regres-
sion (from Sheng et al., 2022)
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Fig. 5 Comparison of two sets of repetitive seismic waveforms. (a) Represents a set of repeated seismic waveforms in 2003, 2009
and 2020; (b) Represents a set of repeated seismic waveforms in 2002, 2009 and 2022 (from Wang et al., 2024)
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2.7 5SMEMM TKEXA TN REEHR

50 7IORT B R AH O (1) b T A B CE AR A AT
Fe VT AERBE SR Pt V2T R 53 5 HAH S
A, R T K SCRUR R M R U ) 2
( Clements and Denolle, 2023; Hillers et al., 2014;
Lecocq et al., 2017; Meier et al., 2010; Poli et al.,
2020; Sens-Schonfelder and Wegler, 2006; Tsai, 2011;
Wang et al., 2017), 4FEM G0N, R/KKBELE
Hh ST TR A B A = A I AR () FLBR R 30, S8
A RN, AN T B R B ) AR, (R
5 HFEKEEAELEE, KI5 BOHE R 83 A g A
HEIR, U0 Luan %5 (2023) F| F S MR IR A 72 B
VO BN B, RIS BT SE IR AR A 5 7K R K

REFA . Fedlt, Mao %5 (2022) FJ FH H 7 94 I &
FE AR 552 EnH b [X b 72 95 5 8 Ak 1R I 25 REAE
by 72 P A A 5 R KA A TR B RN Y
FKATAHITHS (B 6), K T Hh 7= I A8 A0 1 i 2
FHEAR7R 1 b S KA A R AR = CR PRk
WAL . BB AR T MR SRR S 2 Il () 2 B,
IR T A F AR R ARt TR ORI Ath i 3 36
Z B0 DU 447 4E 1O AT 5t Fokker 25 (2021) 247
Tl TH 90 A S0 A A 0 F L B 7 PR B AR
43 M 2% BH LR 77 AR A0 R DA AR N o 381 F AR P
ABAL AR FE AR AL, 2 Ja, A ATTHE S AL RR T 7 Uk
s Jo0 T 0 T8 P8 I A0 2 1) 738 A A5 L P 70 788 e B ¢
FE HIAE LB R Lok (Fokker et al., 2023) .

(b)—o 064 /?J‘{/IV | (I/\H | | | | y;"g | !
—0.04 — i \ ‘y:n‘ 4
e Pl 1 Wﬁw / N
§ ooz%ﬁ\ ﬁ P ‘K fﬁ ﬁk) M% PJ H \ b%ﬁ ! w
QOQ:(\WM\ h ﬁv
von j “’ W' \ tJ \‘r wa : th)\um /\}
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T T
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A

Ko MXBEAZ . FERE. ACKREFA. (a) PR S RBEREN RS, (b) PR 5K Kkt (518

Mao et al., 2022)

Fig. 6 Time series of relative seismic velocity changes, precipitation, and hydraulic head. (a) Comparison of seismic velocity changes
with cumulative annual precipitation; (b) Comparison of seismic velocity changes with hydraulic head (from Mao et al., 2022)

2.8 SHEMERREXHM TN REEHRR

BR 7 SR E AT K LA SR R I AR AN, FA
B8 R A B AR AR A BT S X R
BERBhAH G IR A28 A, A BT X 4 5 Mt A ok
AT, IR B At 7 AE AN [R] Ah J1 IR S ML N 1)
178 K EHEFT I I 2 % 2 851 1 3 5548 4
( Clements and Denolle, 2018; Illien et al., 2022;
Lecocq et al., 2017; Mao et al., 2022; Richter et al.,

2014; Sens-Schonfelder and Wegler, 2006; Wang et
al., 2017) .

FEIRIE,  FASENEI DAy i 391 o5 A% i 7 3k
#E (Lecocq et al., 2017; Meier et al., 2010; Richter
et al, 2014), R (Silver et al., 2007) 52
k. v M (Hillers et al., 2015b; Mao et al.,
2019; Sens-Schonfelder and Eulenfeld, 2019; Takano
et al., 2014, 2023; Wang et al., 2020; Yamamura et al.,
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2003) PLRIK AR URE5FEIE (James etal., 2017)
T DO Hib % Y B AR A 7 AR A 2R R . LA,
RS L [ 0 N T = B AR A 35 M 5 S B 2 ) S A
#H WS, (Donaldson et al., 2019; Wang et al., 2017) .
0 43 1 DX B W I 2] 7 52 H AR FFAE (Li and
Ben-Zion, 2023) .

2.9 (ESIRMEFHT /v BT A 2R

WG T 7T I H TR N, 70 & T W ) 381 g A 4
HA—E 5E A HFE TH R A B J SR, etar
VLB ERME, s S ENA L. 550
Ak 2 MARZS B 5| NI R4 A, R AE 23 B i
FATHRAS SRR 2 LB - XHE SR
(RIS AL BT T2 L T 82D Gt R4 2014; Zeng and
Ni, 20100, {HAG BTN RAETR BT HL R A B A2
LB 378 7 IR 224k (i, Hillers et al., 2015b;
Withers et al., 1996) . IT S AR IR I K IR HE T
IRIFIIBEFHLLS. Liu 25 (2021) 1E 79 7)1 [ HBIX /K
2 DX 35 PRI APT 5 5 B T SRR R VR PR A B AR i 0
K H T SRR AR, RN BT R B K K AL
(AR AL T 80T AR R IR 10 S A0 AR A 3 T 5| AR AR
IFAARAY, BP0 5) 22 SR R VRS 5 A8k T
M T A A4, Luan 28 (2023) B0 58K
EIIE 73X — 4518 R LAE 23 A B A 26 ZE X045 5 YR 1)
R VEEAT — 8 19 20 BT REE G H B R A i B
AL

3 BT b R R T A o I AR A A
et

BT IR BT LIS S0 BN AL T R
ERIAFEF Z AR ZAL. I FE M EEESH
W 7 9 R R ARGE (i DAS. A TU T AR TR
), BrRIEAE S RAE TR E . EAE N E R
Fs R, BB ST iR AE R 18] 5y R B R
i, SRR BRSNS N TREAREMN
R SRAT R AL B RO T RE, A0 R A RO I T
B REHERE S BN AR ML B B . B REAL R SR
PR, H R A5 AR SR T RS AN A2
FEW BRI ERAS T — R A (il LA,
20200, £ 2 {35 T RN AINA £ IF K. R
IR AEHLEL R I 2, 0oy 5E A RO X 73 AN )
WRIAFAAEDRERE; 2 RRT LS SRR 1 —

JEVEAR X T 1R 52 2 2R G AT HER T 7T 23 #T
Rl 2 AU IR A5 S8 T ER: DU BUs AT 221
WHRIZEEITRE, ik B Rwt e oE RN A T
HEAT BRI M2 R o 1R 2T B
X HRE BRI R A BN AR AT FUA L DA R e 8

3.1 ARFBINFAR

AR, A E ALK (DAS) HIRE&H
L, AT RURE A5 G AT L 8 e o B AR R s R B
LGRS, JFC RN T i SR R R
(Dou et al., 2017, X W L7 [X 38038 & I 4% 1
T 75 TH R BT R A PR . ORI v B R A
A E VAR PE X BRI 7 T IS 1 RAFIRIRE A, W
D EN 22 ISR R ZAH OGB4 (Liuetal., 2021) .
SRRBAHLCNEZG RIE IR . e, WX
WCEONIEH (R34, 2021) . Sheng £5 (2022)
DU FH 20 25 7= A (A 5 B 0 R gt A, $REE T
FaGE mAIRE, R AR S DLAT RIS B8 T
P S A AH OC I AR AL, BEE RHE R, AT
PLRCMARE B RN, JCHAEIR T IX, AL S5
TURAME LR R AT RS PR R 2, DAS. =T
VIR EREE = DYINIES N PN E S 'S
WINTFE, 2ESERBESMEM, 7T LUA oAl o
AT, FET ORI DX I ) Y B R S

32 FFRERZ SRR

PR B 10 A 5 I A% e AR AR SRS R T 5T
X —AFI AL, SE 2 [a] AR AL B 1 fr
& — A AR AR UL )L AR ORI AR T T, AT
BT R e W ) o B = o Al R R A AR
BN, TR R B AR A A S A e R
JEE AL 50~ 35 B EH R 1 2% 1) () 1k O 1 T TE B
( Margerin et al., 2016; Mayor et al., 2014) . Ober-
mann %5 (20190 FRF TR, AR IBORI TR 3 ) R B
PER% I 28R 2H A ] DA R 29 o = 4 %2 HE B A i
AR IR L

R AR R AZ,  RATAT DAAE 23 (8] Hh € fir
D& 2 ) 7L I PR30, IS v A AR AR T I U
SR, TR B, RATH ATE A —
ANKEA IR R BB AZ AT AR Hh R AE 8 A% FR AL
TR A b A 0 & B AR AL PR, R 4R =
Yt R R ik — Bt A AE AT FIH HIE
BRI, 2 [A) 58 AL AR AR AR N T B, HUCI ] 3 6
AE FE AR e VIR T R k. BRIk, T @ gy
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B2 ey LI I M P 5 M PR AR A5 285G H 2

FEIS TR] 70 - 5T, AR M b o 5 A R R
T AICEGEE, AR P I RN T ARG B ] 7
Pl w A — REC— /N X T 3R, AR AR ER
B mr B R AR, B TR 3 R e R T .
SR I AR A0 1) B8 04T B T SE A s B R e e
R B LR A (R IS B AR A, OB R E XS HEAL
AT AR AR, BRI, i e T T 20 % 2 oK 1
— AN EERIHE T H AE.

3.3 AILEREHEt TN REERR

HRE G uli K B AT R A 22 oWl = B ) S, A
PR RREATE, B Baod Hixe
B AR IR 2 TR B R R L TR RN T
BRE 7V i N RE A A, LA RE M T
CEWE THEEMP TR, 52 E 5% K,
ELE i A0 Joi B A2 fhs 00 7 T A TH O J 2 1. BB B
i A7 ) N TR e AT A B AR 9T, g Kl X
FIFMLES 2% 2] B B AE K L FR B BN P Fa g
FACR I (Makus et al., 2023) . F) I HL 2% 2% >
19 77 ¥ 6 HOAH O% R Bt AT TR ((Yates et al.,
2023) . X6 R FH 35 R AE A 5T I AR M ) AN ER Y
IR, BN IR IR A 2.

3.4 FERMTNBRATEESER SN RS

W H TR RE /TR M, S AR AR IC
LS. WL FE I 8] 5 A1) B SR AR A W] DL K AHLRR &
PIics NoR, A EFEN T RS R, B
DX e, FFRIE S ARG i 3 A R I T RE IR 2
R FEARAK. ST M ) SR A Bh T R I AE A
TR, HEIEHUE TR . TUE A RAT TR AR

3.5 WA BRATEHES

R BB R AL I MLBE R 2 2, 22 Fh
PLHIR A 205 N A B A4 IR AL W] e A2 B &5
TN A AR AR M FLAR S DAL VF 2 Bt
FOA S FOLIU E Ik AR N P AL 73 A AN B
B, Wt NIRRT RS RIRE A R 5 32 K
WAL M, BURN AHLBRIE, PRIUL T
JE BN IR ST (s “RIARAL B U/
), BRI T A AL M BB A AR,

3.6 BITENRTHE

B M FARAT . Cn H BRFIKCRD SRECHT 1 1%

SR R AR AE BB, AN R C A R R
HE TR S A S HOR B T I H 2R (Larose et
al., 2005; Sens-Schonfelder and Larose, 2010) « ‘K
B (Suemoto et al., 20200 & [y H 3 B AR A, i 2
I FH 2 83 E SR PR it 7R i 2 A/ BT e R AR R
Bl A ASE A BRI T 1, 25 R4 T 5 IREIAE K
(18071 FE. Tanimoto 55 (2008) FJ F & Al /& H.
FHRBOAR BRI SE B AN BAEE L, KR BLILIRIE A5
T B R 8Os A7 AE R I A 55 1% . Suemoto 45
(2020) I8 I b 72 Hodsm HU AL 70 BT R T R s
Wy i TR AR AR, RIS P 32 K A
KAV FEMA 2, AT R ) 5 30 4 2 X%
AR, RS R A B g A B AR X B
FURW] T HE T 1 TR P A BORAE AR RAT B A 1 B
A FTAT Y.

3.7 ZEUEHEHKE ImNAIRS TR R

R BRI AE R R A 2 R ERY) 2
LR I R, AR DX 43 AR AR A, 1) S I AL ]
R AN R 2% UL B FE AN B S 4 (i
HhRRIENR . ISR e BORSE) TEAE N MR R
MIARALRFAE, DRI S 2 2 5 # Rl 25 5 He
BRI BERE CndtRIEAS . AR SEUR EALHAE)
BEATHR A 0 s A B T R I T A AR O A5
B ER N 2 R Zh A TRAL.
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