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Abstract: The exploration of the deep earth, deep sea, and deep space represents a major national science and
technology strategy, and is also a cutting-edge research field in the world. Mars exploration falls within the realm of
space exploration, whereas probing the interior of an exoplanet resembles the deep earth exploration. Consequently,
exploring the subsurface structure of Mars can be considered a combination of deep space and deep earth explora-
tion. It is of great significance to summarize and sort out the current research progress of Mars and find new re-
search content. This article reviews the research progress of Mars seismology based on InSight data, including the
new understanding of marsquakes properties and the investigation of Mars internal structure. The focus is on the
background, principle and new progress of the studying on temporal velocity changes in Martian subsurface struc-
ture using the single seismic station onboard InSight and the observed diurnal and seasonal variation of seismic ve-
locity are introduced. The influencing factors of Mars seismic velocity change are analyzed through relevant stud-
ies on the Earth and Moon. Problems and opportunities in the study of temporal changes in Martian media are also

summarized. Finally, we prospect the research direction and development trend of time-varying monitoring of Mar-
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tian media by using single-station method.

Keywords: Martian seismology; InSight project; seismic ambient noise; temporal velocity changes
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KB GHERAHARIAT R, N BRI ES AT LA 22
HLTE KR BB 1964 4 “OKT7 4 5 KRR
R I AR Al 7R Ik K R IR B, BTT
TR KB F R 82 2023 F 12 H, KE
EICH TS . R E L P EE 11 A KERT
PRI S5 B b, AHRRIRERE) “KE” =5 (Mars-
3) TEHEME 20 s JEt AT ER G 2 THCR, Bk, M
Feg R B, HIERKWIEAT KRR R ) A
AR E A E . KRR N2 A ] BE TR B A
)RR, BRI EN NBINR T E R HE R
X MHEAT R AESR, KRS MT A
AL AR REAFAE L R 2 4, AFAE —E 5+
PR IR FE K R BE NS LT3 T B ER R s .

PAAE: KB R0 5 R0 7 #0280 K R 3 245 B
1, a0 IR K . KGR S R 4
fF LUK AT e B A W) A A7 A B SE (Jakosky et al.,
2015; Orosei et al., 2018; Renno et al., 2009; Saunders
et al., 2004; Smith et al., 1997) . 2018 4F 3 [H [E i
TR RS “d %87 5 (InSight) # Wl &%
( Interior Exploration Using Seismic Investigations,
Geodesy and Heat Transport, Bl “F|FHHuE . Kih
I AL T IR A BRI D AN R KA
WERE BRI ER IS CH DM EZ 5%, 2021 .
“THE” SRS TR AR AR MR, T
Rl K BRSSP, T E KR N
Fh B AP s B, TN K R ) B e
TiTMGE L. “IEE” SAES IR (Seismic
Experiment for Internal Structure, SEIS, B[ #R il Py
SEREIHLRR SR R B BT IR K B R L
TF DL A RS I R A AR SCE e gkiR “R
27 SARSAE KRR BRI TR, BdE K
R MVRHE S I R A RS LR EET
L X I = PN E - € RO Y S RHIE T LTI
BT s AR5 B A AR B S R T KR
BG4 KR TS SR A A SR
W ] A O B AR R T VR SR KR B HRR
PO AP Fi ke, JRgsE
MR EAHSCHIE Lo A s AR A O B s e

PR R,
1 KEHR AT TR

1.1 KEEHRIER

KRR FE AT 1976 FIRM) “YE” 5
EHhtids, ‘407 | SHRAORBEMS, M “4En”
2 SR OCGESE 19 A H I 3 Bl s 7 R A
[\ 7 (Anderson et al., 1977) . “4imt” 2 SHhE
AR F BT SER KRR SEAT, AT Re 2
B E TERSE PN, maEkKERm E, Fiid
S B MU RS T AR R T R R L % T
“IRE” AR PR A SEIS BHAEAT KR K E
R, M HIRKCE T FRFAAIET X IIEE (Lognonné et
al., 2019), ¥ STIE B % Hb 72 A0 A% 0] 1) B3l 2 A 2
(1), F&T SEIS #ds, KEMESH A SIS 1 i
ZH AR (Lognonné et al., 2023 & HH 5%
BR) . SEIS #di 2 #M K BN HEify . KB 7 57+
-k B VELE AL P S (Banerdt et al., 2020),
T BRI HAT . (Ui ERD) $R AL T OCHE Y
Bt (Van der Lee, 2023) .

SEIS 4 =L 984 (VBB Fl =A% Ji 1
(SP) fEUK3:, ik 1T M 0.01~50 Hz H)KE H
B, BERRY RAITEKKEH (Lognonné et al.,
2023, ff SEIS W5 10 3¢ 2 K2 g9 i = A5
KB RARESEE RN, FN, BT KRR
FEEE TP, KO 0 R R R £ e LU AR G A
K1 EoR 7 “lge” 5 g i = A0l s il Sk
5 KRR AL, HERT DA S, 5
FEAAEY R 2T 204, R KRR 2= K R
R R A AN S 5y, W KB 2T K R R
(0 VR0 AR A5 R A ER T IR A T Bl AN R 65 3 ) PR A1
B TAE T B ROE R H AR IAE KR EIFAE T,
KR R A 32 R N AR I A, R
F2 M B A3 4 e B <K R AP R S MR S PR A
ZE5t, BEMATSEAL KR Z RS T I (AMER
&, 2021), FAFALIH Marsquake Service (MQS)
(Clinton et al., 2018, 2021) 41 33 . K 2 & FF
53 N B (broad band) . K4l (low frequency) .
F5EA (very broad band)« =4l Chigh frequency )+
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Fig. 1 Image showing the evolving Martian ambient noise as recorded by the VBB vertical component as well as the occurrence,

amplitude, and distances of low frequency family (a) and high frequency family (b) marsquakes (from Lognonné et al., 2023)

H & M Cvery high frequency) . # = 4l ( super
high frequency) . ‘KEREH] “ARA" AR “ 0407
H GRS A AFE, fEHhEk b, (RAH R 8 T
RAEAENT PP BAR PG T Ak FFRE S F i R = AR
I iE, HFEMMZA 1~5 Hz (Shelly et al., 2007);
Mmxr T KERE, HREEINT 2.4 Hz B, A #AK
JURAREAE, T4 Re 2 OGBS I Z AR, PR
RTESNFAT. AR B RS AR A, A
10s, FEHIAAKTHEILR L, BEET
5 Hz (Lognonné et al., 2023) .

% % MQS H & Wt A& 14 (InSight Marsquake
Service, 2023), #% 2022 4F 12 H 31 H CKEHH
1456 KD, SEIS ILARIIE] 1 1323 K ERHEM,
HP AR F A 59 4, RS 394, mAFEAF
162 4>, 2.4 Hz 4 989 A, HEiF ik 74 4
T 1392 AN A RS SR ER IR T AR AL 35 L
M TTAL AR ZERRE T, JGHEMNRE A (R
g nEAD BiE D (R E: KRS
HEIM AT D (Lognonné et al., 2023) . ZH K EEE

REARN, AHAIT 50 KB RINBRLE 2~4 R
], BEMEHR Ot K ENERREERE (Witze, 2021) .
BEHAT, K& A IE R &= F A4
& S1222a, FERRN 4.7+0.2. T K5 w4
M LA, BT LA S1222a %5 &= e EL HAE Rl K
2 5053 B E AU SO R MQS R i F A O R
= A (InSight Marsquake Service, 2020), £ 4 &
N 7.63°S. 170.67°E, AT LR I> F AT,
“TWEg” SEMSFARM (Kawamura et al., 2023) .
S1222a HAFAEHE R, AT LATE £ bW 52 31 DL AT AS
B W) HAE A B BIRRE . Z IR o R
F 5, MKT 1/30 Hz £ 35 Hz, #H2E 542k
RUHA s 3082 B AR T S A0S 1 1) JR2 B S IRl
I % (Kawamura et al., 2023); &2 — AN [F B 7=
AR ER R A, IEF BV KRR B
JURZ GG MK E, HRER RN
[ 10 /M. [H, S1222a 484 T 5 A KR
WG S (RN 1.2 79 .
HoREERA R ARG FES, KRR
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(Garcia et al., 2022; Kim et al., 2022) Fll Kk 2 % &
(Posiolova et al., 2022) FJ38 & 45 7Y &8 w] DA FH Bt A4
LR KERRAZE THE, kg
RASHEORY, HAR T AE 2 2 B i 7. IR 5e”
TR AR &P R — MR R T,
HYTRM LN, B SMBMAa, JLPFEAESA
(Hobiger et al., 2021) . SEIS ‘L./EHH[E], 2408714
dr A R AERS, AT DU I 3 B S A BRI AL
o W RN P AR AL R AL THE 7 B (Daubar et al.,
2020; Garcia et al., 20200, [F 5 i@ id -k 2 8 e
®AT#% (Mars Reconnaissance Orbiter) 424k [f)#H
WURAIE S B of i o 1 A B B0 8 5l 5 SEIS 44
I 1R T P oAS A e I KRR R A R It T B A
(Daubar et al., 2024; Zenhiusern et al., 2024) .
B oF 723 [) 4 A e BE RS L K AR R, Durdn 55
(2022) F2H T VORI 78 77138 0l 1 5% Hh A A 2]
WF: ML ALY R R . A 7T
BORULEL. KRR R 7 N TR 54, ik
HAHL /2 T71E (Dahmen et al., 2022) AR VT AL
7% (Sun and Tkal¢i¢, 2022) %. Dahmen %5 (2022)
W T —MIRE S A ML ik, 48 Mars-
QuakeNet (MQNet), Tk 2 5E I LBrmg
Y BT = EUINEHE, MQNet Tl n] DAAE RS
AR R R 4> B K R S A R R, XA
EEIL T PTAE N TR A 0 MQS H s s i
BEHM, URKRZEEBERNFMH, HalER
2] 60% MBI FMF, XEHEM|FE N T H B E
BOAIF. Sun A1 Tkalgi¢ (2022) F FIASAR UL FC J7 V546
MBE T RN KRR, FEREFL T H RS, 45
7 KB N AT SRAFAE XA

1.2 KREABELARIER

RIEFEAF TR RS ITEANITE N
ARSI, AT DUR E KR S TP
LAY SR IX LE R RN e — ), 75 ZESEPR I M R
17419 (Anderson et al., 1977) .

PR ER R s T L2 R K B R E R R (G S
WHER “Plah” 5 KRR R I B RS X
PAF T AR AW s, AT R
SRS IR E s, LiC %% (2022) 3K18 7 0~80m
[PERR mAE o E M EUE A 2P R, N
fift KR S FCIRF R Ak 3R KK o A 2 S B R
20 A S T TR (FMEZE BB, 2023) .

{EA2 2 B K P I 25 40 2 A 2 MRS T Hh R 3

. HAT, “M%” SRS MM ) SEIS %4 & H K
LI JE AL JZ AR AE (Stahler et al., 2020)
DL R J v k2 B e S NI B2 (Banerdt et al., 2020;
Zhang et al., 2023) . Z5& “TAE” SRR SV H
REPEEE AR B SR IR IS 5 ok & K R AR
TEYR, RN KR I R R KL H BRI
3, RPKBERWBETALEMNERY (Log-
nonné et al., 2020) .

Carrasco ¢ (2023) f#if] 0.4~10 Hz Z [a] [ 45
) 139 N EA R R E KRB T, R
T T SRS N 100 m IR R —4EB DI
HEN, SR ER, SRV SIDZRAEIEER
ARIPORBT Y N A —RE M m#E )2 (shal-
low high-velocity layer, SHVL), £ % it Z 6] 1%
TE— /M55 AR I 2 (buried low velocity layer,
bLVL), RMEEMZ FAAEEEEE, E2lT
bLVL Al SHVL Z [N B B4, 4T 2.4 Hz
(IR 450 & FLRRE T SEIS ZUHE 7RIy S s
WHIAIAEAE 2.4 Hz PR RATE 16

KR I 5 T B AFAE 2 AN T . 1 B
S1222a = # P SRR EOIFE BB PG4 1s
AW HE R S e, R 2 km IRELTTREZ— 2
o P B AR ST ) R R JES . (Shii et all, 2023) . K
FEHIRAEEL) 8 km [ 51T, FIA S1222a FAFHRI
F1 SH B [ SHIESE T A AATE, R -
(KBS N AR AE IR 25 1) e 1, L3 AR B
KFKFARALBGEFE (Li T Q et al, 2022) . i £
10~25 km, X S1222a FA4 (1) 3 95 A1) R8¢ S i
(3 AR R, AP AL BT D8 4 13 3k 5 T
T HEAEI Y1 (Beghein et al., 2022) . FIAFHEA
AR B 2 4 1) S 22 5 1 i DR T e L B D) AR TR
SEUG S ) AR R A . REER S fE
HEHM A ZREAN . KRFZIE R MATTRZ S5
(R 7KF 43 2 BA SR AR K ok 5 3 TR A AN % 1K
BURERAZ B 04 (Lietal, 2023) . FRIRE 2R
Gb, KIBRFEIRAEAERI AL B S e, R 2R THI 1 Hh
FEAE A (T B2 N AN 20 A ERAR MR B Bk
Ji, R S1222a S04 I B A 2047 S, RIS
T 21~29 km LA b 0 5 8 v Sl B D38k 3k 2 v AL
i, RIILERE DURCA B R SR B LR B2 AT
B (Lietal, 2023) .

KESEEERNE T AR () FKERE
K 5 A B8 S ERE A B 3ET 98T (Hoolst
and Rivoldini, 2014); (b) X} S1222a ‘k B E 5 %8
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KR AR = T8 1) 2 5 5 R o 0 & R AT S 3
(Kim et al., 2023); (c) @/ #77EHb T F 1 &b
S S AN % e 1 B A ( Knapmeyer-Endrun et al.,
2021) L IXEETTIEB R IR B RN
42~56 km.

NTRKETERZ S5, Duran 58 (2022)
XFEB A ARAN K R B AT AT 7 e B AT, IX {0
HEXEZ B NEE, SREHLEKEBLA N
2.4~~2.9 K/km s [ [ # b6 FE — B ZEH 22 450 km
TRPE. AR “UNZE” AT 55 LI A A ) LR AR K
B EFH M S0235b. S0173a &5 1] LLTE M iR 71 S ¥
P BAHAL, BEXTHLIE S5 M BEAT 2K (Giardini et
al., 2020) . Duran & (2022). Giardini & (2020)
SRR R T EJE K B AEEAR . KR8]
e 7 R IR ABRE KB B, BRI 4
S IRFIRN AR v R R EUK BRI T — R R
sk, & S #ot & (Khan et al, 2021;
Samuel et al., 2023) . it 2%, HT X —BHEARMKE
JEE R R TR (0 0, AR IR MR N K R AL
EHATCHERZIEERY, XEEA AR
HEREE, FAET KEZE KEMWZE (Khan et
al., 2023; Samuel et al., 2021) . FEmLZ M N KA
DAY b, ARG AR T UL R 1 MR U 1 ER AR
FEREIT URIHRME, A KR AZ I KNI RS 2t
1T R T 45 B8 — % (Khan et al., 2023) . Khan
2 (2023) 5 Samuel 55 (2023) #fFH LR, 1A
RlE AL T BAS K B

KRN FAEER B, KR8 )V A IR R A%
2 LR B 2 SIAE 1650~1750 K AT 1900~2100 K
206, Fril H ek B R S (Duran et
al,, 2022) . TFEKERERNTEAR: () 4
T ScS P AHAL (Duran et al., 2022); (b) BEe& )
18 SEIS #4 H [1) K AL W8 10 5 O 5 K bl =
¥4 (Stihler et al., 2021); Cc) KA il & 4T &£ 1)
H # (Le Maistre et al., 2023); (d) *f kK B iE
T SRS [ AH DS HEAT U8 5 B AN R Ay
W OB A% 8 14 St IR B ( Deng and Levander,
2020) . HETIXELTEG R K EAZ R4 1835
+£55 km, ¥R &% F 35 % BN 5700~6300 kg/m’
(Duréan et al., 2022; Le Maistre et al., 2023; Stahler et
al., 2021) . fEGI NGRS RERR S ER R Z )5,
Khan %5 (2023) 5 Samuel 2 (2023) *t K EZH
PR E AT TABIE, A2 b 2w AR sk s
T 41 10%, 2 EEAHE Z B R HEDSE N T 5%~8%.

BRnR B G R R M CK EAZ I E B 5> (Huang
etal, 2023), HTWEZKFEAER, WK
B R SZEERNS, KEZLREE SRR
It E, W% (Stihler et al., 2021)

2 KRBT IR

21 “RR” SHRBIEAIRSEE

A% SATS R AL SEIS Fi 4% T VBB
FSP AL s, {H SPICRMH S LR, fif
HIVEAE KR H i i kit 15 5t s, Frbl
REZHn il VBB =17 #) (Lognonné et
al., 2023) . fE%1 E] MQS [3%E 4L W £ 48 A A7 2
ANKFE R (sps) F VBB 2 & 504l F AP 20 4N R
FE S VBB/SP T 7] 73 SR A 5, 0 R BLAEAL K
ERFEMHNES, 5K RSN 20 10 2
100 sps. AHELT “4E50” 5, SEIS [k 2 E I g
JI1E 1 Hz W29 2500 %, 76 0.1 Hz IHR 4
200000 £ (Lognonné et al., 2019) .

SEIS J& Fl A 5 T — /MO 4 ok L 5 /b A 5
AT KURIR B BE e, (BB 3 B8 A7 AR IR AN e 5 4B
Y4 X [T, SEIS A& B 1SR Il RS K
WAV R B E RS AAMEERIS) (Lognonné et
al., 2019; Murdoch et al., 2018) . [Af}, & [E 285 X
JHMERT RA B R, Feal g LI E RS
1% 1.6 m (19K BH fi FE IR A 52 3 R 7 A FH 1) 32 25356
ff (Zhang et al., 2023) . Kk, KZHOdxEHES
2 3 iy T AR 5 Bl 2% H BB ST (Charalam-
bous et al., 2021; Panning et al., 2020) . 52 X520,
KR ER R R AR B E B R A
(Chatain et al., 2021): fER& 8], KEIEH &,
SEIS [¥yHb 5 g P50 S AE 4~30 s H[A] bb HbER (7342
7K 2 500 £ s MR AR, BN KRSIEshEIZY
(Banfield et al., 2020, X3t K< it 5 208 Hu i
AT LA i 2R 3 5| AL i Hb R M S R IR IS K,
DL SEIS B H Ridsk FAEE R E XS (Hobiger
etal., 2021) .

TEARY S B LR, 5 TE 1.5~8 Hz
ZAIAR P, (HAE 3 B B R AR — AT L
Wi B B W 22 B 1 2.4 Hz # it 1%  ( Giardini et al.,
20200 . 3XA 2.4 Hz BP0 55 55 il 4% AH ¢ R AE
BASHEAR, RIEHMIRE R, EELEEEK
TR, T 5 Bl 28 A D% (0 R AR AR S 32 B KPR AL
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I H 554 2 A G A R B, AR A 52 I R
fil. geAh, 2.4 Hz A0 B30 10 SR AR R A K B RE N 2
PEA R FEYR (Dahmen et al., 2022) . 2.4 Hz W& {3
510 55— R AR TE T AN B2 9 B U 3 XU B s
XXM 55, HARIE S 4~6 m/s YE A Y
LMWMAEEFBI X R. BEHE AN, ERY
30~75 m (IR EA — AN HUBMRE T, &AL T 5
{1 IR LA A | A < R B i oA ATV ) e sl (O BT 2 =
2.4 Hz Ab 1) S5 35 41 W e AR 2 1% JR) 30 A1 3 5 4 3R
15 2K 11 % BE = A K Airy #H ( Hobiger et al.,
2021) . A — I FEIN N, 1 UEAE AT DLE I Hh AR A
N7 R MR S5 ) 2R A A R R (Carrasco et
al., 2023) .

Ak, WA xF SEIS HIhEid w4 —
ERITH, ATE RS BN & B B AR, ™~
AT AT RS, AT LA SEIS WL 3. K {f A5 90 5E
T SEIS ich 3% 2 {1 AN K A0 8 4k 5 4F (S0133a Al
S0189a) Sfr bjg “FEIFR ™ 7E4 [A] s 5 BIIR
7 (Martire et al., 2020) .

22 BEERBEEEXSN

BT, KE ERHE A BACHE—A, 1k
RREMNRIBN HEEAN D, FETREYE
SR ) KB A o 2 R B FL I TR AR AL B AT T O
BLOARYE R S S AT DG TH L R A B A B A
B ¥ (Shapiro and Campillo, 2004), B2 8N
Hi 52 2P AR ) — AN T I LR R T . AE IR |
RS B/ H AR TR 2 B T MR SR
A% ¢ (Romero and Schimmel, 2018; Shapiro et
al., 2005; Xi et al., 20200, 7 i I H T A BTk
AL 5 TH A EE N (De Plaen et al., 2016; Liu et
al., 2018; Sens-Schonfelder and Wegler, 2006) .

TERUE TS SR A G, — e LA A
Kk, B

c= [ v+ e (1)

Hp, viORR B GRS PIVILR, e AT
SIS 1]

KRG SRS B OCTT DIR R “ iR
5 T J7 8] W TR S S N, 2 TR KR BEEE T
(Deng and Levander, 2020; Schimmel et al., 2021)+
Hi e A 4y S g1 S PR (Deng and Levan-
der, 20200, WA DLFREX [ K R M8 458 (Deng
and Levander, 2022) . & H 7281\ SEIS 1 #%11

S W P AT BE BE MR R RS A G TS AE SR, {H Deng
HI Levander (2023) 2B 1 JH 4G 10 R IE K
BRIES, 7F0.05~0.1 Hz T E 5 & H X
ARAT 1T 5 ) b 2 A gy AL 08 1 SRR FE AR B

T FU R SR S A O B e Ak PR R E
EREATHY,  HASEI ) o 545 20 % o AR AL,
G P AN A, RS T W 1P BSRAE 5, IE R RE
355 G5 0l B ST A 0T AR PSR R N, R T X A A AL
W 3055 22 A W DA S5 R A Joi Jpk ok o I 18] )
A, X W 7 VR R O TR R Tk
( passive image interferometry, Sens-Schonfelder and
Wegler, 20060 . FHARHF Tt v, I 5 A [R] 1] [H] ) g
FEOE/E AR E N W (do, #HBE# T
A0 BB TH S 2 51 AR ), )R] DR e I AR ) E
W m A (de/o) A3 3] F MR s E A Cdviv)
(Hobiger et al., 2014; 54545, 2020; Sens-Schonfelder
and Wegler, 2006) , H[l:

dt/t = —dv/v Q)

HAl, XK %OE kR EEYERA,

N BARA 2 KR A 5 R R AR
A 7T 3k .

2.3 KENFCRERERAMEEN

Compaire % (2022) R THHE RN Z
T 8 i I S OR R AR E N AR, IR
KRR I K RN, R
HE ST MY, R AT A% 32 2 i U B 4 .
TR KR FERE, n] DUTE A8 b0 2 B R U R A
T A Lk B ERE, R i IR U R BN B 2 4
WiEZHELEKERWREER W&, Com-
paire 5 (2022) # T — > KB AF 1 R AH X AR
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