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Abstract: Large igneous provinces (LIPs) play an important role in crustal growth, metallogenesis of metal
elements, global climate changes and life evolution. Despite extensive studies of near-surface geological records of
LIPs, our knowledge about the middle-lower crustal intrusions of LIPs is very limited. By comparing geological
and geophysical data from the Emeishan LIP, the Siberian Traps, and the Central Atlantic Magmatic Province, we
investigate the effects of the magmatic plumbing system of LIPs on the continental crustal structure and global cli-
mate. Due to differences in the stress regime, the lithospheric thickness, and plume-lithosphere interaction, each
LIP may contain a unique plumbing system and crustal structure, which will affect the dynamic evolution of the
continental lithosphere. Thermal-mechanical erosion of the lithosphere by a mantle plume will cause lithospheric

thinning. Under regional far-field extensional stress, the thermal weakening effect by eruption of LIPs along pre-ex-
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isting weak zones can enhance the lithospheric extension and trigger the continental break-up. By contrast, if LIPs

are far away from divergent plate boundaries or under regional compression, magma underplating and crustal intru-

sions will increase the crust-mantle coupling and the lithospheric strength, and consequently allow the long-term

stability of cratons. Volcanism of LIPs is one of the controlling factors of global climate change, meanwhile large

amounts of CO, and methane released by contact metamorphism between intrusions and surrounding rocks also

contribute to climate changes. The plumbing system of LIPs establishes a bridge between deep mantle processes

and the Earth’s surface system. Recognition and modeling of the plumbing system of LIPs will provide new in-

sights into the plume-lithosphere interaction, metallogenic mechanisms of LIPs, as well as the relationships

between LIPs, the global climate change and massive extinction events.

Keywords: large igneous provinces; mantle plume; pluming system; crustal structure; magma underplating;

global climate changes
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KKF A (large igneous provinces, LIPs) 1
DML ER s R AR AR N A R AR, LB &
(>0.1x10° km®, JHE>1x10°km®) HEE 1—5H
J3 4 1 Bt R N REAE (Bryan and Ernst, 2008;
Bryan and Ferrari, 2013) . LIPs ULEVEA KA N,
B an: EJREEAE LIP (AR SIS 124, Deccan
Traps). PHAHFINE LIP (B FK A 7417 R W 1S (%,
Siberian Traps) W KPUF A HK A (Central Atlan-
tic Magmatic Province, CAMP) . 3% [E & 4& Lt 3 V7]
M Z A (Columbia River flood basalt province )
B4 9F Bushveld %A 1. Ontong Java ¥ i /5 Ji # /2
BLRYK) LIPs. LIPs FE4XBK) 32 404,  H Al &A1&
Z ) LIP £ % 4 3.79 Ga (Isley and Abbott, 1999,
2002) . ZLikR W] LIPs Hou i #i LR (<2.5 Ga) 1
2030 {HFERE IR, FEH KRR AER LIPs
AN, oK LIPs BT = 2 85 1 B,
RAFR M A (Emst et al., 2021) . 2 K¥ES
A BEL R T T BRSSO X G
B R LIPs IR MER AR AR, FEHG AR it 1Ly
ity LR B IR K B AN L 5 LIPs O AH G 14 75 1
TE . HEVE S SRS 7 18 00 5 TR AR, A b 58 2 1) A
K i E EALH] (Arndt, 2013; Thybo and Artemieva,
2013), 17 LIPs Jik v 3B B A A 22 3G B4
BRI R IRAT, N s A i A A 5 K
AWK K4 (Ernst et al,, 2021) . [Kth, LIPs id3%
25 7 5RO SR & A ) T ) B JE A B
M, XTERRREE 25 KRB 2B, K
PEER L B E 2R R0 Hh 2K B R R A B R L
(Black and Gibson, 2019; Black et al., 2021; Condie
et al., 2015; Ernst and Youbi, 2017; Liu J et al.,

2017) .

AR LIPs & K I8E R 4 1) 7% 3 5 T8 JL+
METE, Bl SRR 75% 1A KA TR T
1—5 [ 4E GEE<2 BI9), RXEWH LIPs K
P TP R A R, H AT R A A
A R T AL 08 4 T Mg AT A Re SR A LIPs BT 7R 1)
PR AR R8T A (Campbell, 2007;
Pearce et al., 2021; Richards et al., 1989; Saunders,
2005) . Hui@ T M BREE B E ) 5 5 RE R AR A 1)
TOEIE, FEHBER RGEIRGEI . M1 A ) B AR
KEETEAH K EEEER (Gerya, 2014; Mitchell et
al., 2021; Zhong et al., 2024) . LIPs J# % # I\ A &b
WA Sk B VR A R ) P, TR B MR A R T
B R T # i B B IR (Campbell and Griffiths,
1990; Jellinek and Manga, 2004; Koppers et al., 2021;
Richards et al., 1989; Torsvik et al., 2014) . B4 H A
K LIPs 5 #K i Rl B R 45 15 &2 0 LIPs [t
AT R 1A JEdE, Bl 4T LIP 5 Reu-
nion # A, JLKFAFEKECE A S5UKE A (Camp-
bell, 2007; Richards et al., 1989; Zhao, 2007)

(K 1a) . EERREEBRIRI, BT i{E A I
LIP F1EHE ELEI LIP 2Z 4k, A2 8 4 K 2 % LIPs
AEAG R 5 #8704 T Hu g Py A AR BT VI BH 4 1)
1%, RYEIIIGRRIE T8 5 HHAE 500 Ma
Dk fRFFFaE (B 1b) (Torsvik et al., 2008, 2014) .

iy AT KR Bl oy FAES R AT S I AR
JE ML RE IR f2 KBE 3 7 5 A i B # sl (Hol-
brook et al., 2001; Hu et al., 2018; Lavecchia et al.,
2025; Liu et al., 2021; Pearce et al., 2021) . LIPs &\ 1%
vl Rl B A ) B AR, RARR 2 LIPs fEBE K
Wi iR, (A LIPs 7 T A2 € i se o, i
P 4H FIE LIP. 0% JE L LIP. 85 B LIP. F
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(a) Schematic distribution of LIPs since 500 Ma (from Ernst et al., 2021); (b) Relationship between large low shear-wave

velocity provinces and distribution of Paleozoic LIPs (251-510 Ma) and kimberlites (247-542 Ma) (from Torsvik et al., 2014).
Numbers in parentheses in (a) indicate the eruption time of LIPs in Ma. (b) is 450-Ma true polar wander (TPW)-corrected
mantle frame reconstruction. Red lines in (b) delineate two large low shear-wave velocity provinces on the core-mantle bound-

ary beneath Africa (Tuzo) and the Pacific (Jason)

Bushveld 22 %5 7% (& 1) (Koptev and Cloetingh,
2024; FKKE 74, 2022) . LIPs [ B E R G0
BANA . B A LIEESE, HArxs LIPs AR
(i TF 3 R T Hh R I X U AN R 1 o
i, X LIPs AR RS2 NE 2 B/b. b
ERE AR IR A AR BRI R, &
A7 BLSR LIPs K AR B 5 A 4 KK 248 A0 R

ACFAT R A A G PE A3 2 7T VZ A AT (Black et
al., 2021; Ernst et al., 2021; Fan et al., 2020; 7L # &
85,2024), {HZ WAk B LIPs 12 N5 X fili 5T 45 1)
F A BR A IR 52 e — LA FOME R
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CAMP LR A E M EIA T LIPs, REXHE
TR S 5. e 5 R . SAE IR RN,
NERVT LIPs 7EHBER 2 Ge i 4k A 9 /E F S A 3 i A .

1 RKECE A B A R IETE R 4t

BE & 42 BK LIPs 75 40 %% HhERIL . SFE A
R FEMREEM BT R, SR IBIE RS (mag-
matic plumbing system) % LIPs [ iff 5T #4 51,
FINRE R MHIEIR X EF F76l CER DS BIms
HH MR B s I AR PR A 1 E LA AR BT %
HBRY) B SN Z] ) 2 B4, Mg A Sk AR 2
1000 km, 43ibgA: bETF 20 BRI, Mgkt
S AR, K EARRA 2000~2500 km, 5
T BCE AR ER 2 A A7 T LIPs K L& 3 1 oy,
AREE T MR AT Sk B AE I it A - 1 0 A I 4
EFE AR PP T LIPs Ahas LAk X E
I, AR T A R AL A R A A E IR
Y&l (Campbell and Griffiths, 1990; Campbell, 2007;
Xu etal., 2004) . Bb4h, 55U AR R Fe- 18 AH B
VE AR 7 3 [ AR A = 2L, 1 B 3
JETCER KRBT AN E 45, LIPs Rl 0N — B A2
PRt 7o s CokAH 5455, 20220 . fildn: 2055
—2060 Ma )75l Bushveld 7% 14 & 4= BR 5 K 14
T J P A B R B IR R, U SR AR R AL
Yo, $Ht T LIPs & 55 B 1 F A i Y S 43
( Buick et al., 2001; Cawthorn, 1999; Cole et al.,
2013; Scoates and Friedman, 2008) . fi7 F i J& 1L
LIP P47 (9 DY )1 ZE 70 b [X 2 4 2R b K AL ERRE Bk ™
IRERAEIX, ZEAE. 206, B, KB RN
BRI R AR A T8 Bk -8 B Bk L 2 R AR B T 8
A ER A AHT BT I TE) S0 JE L LIP A X s
RN A —F, ARG SRS SRAEA [FVR L 7 B 45
fi~ VBN e A AL IR B % ORI R 45, 2018;
Zhou et al., 2005) . A2 P A I E 3¢ 4 38 75 46 2 1
Noril'sk 72 4= BR e K 5 91 BB 0 0 31 - A B AL )
WARIX, S0 BB Bk -8 BBk i s R TR IR K I 2 7
t, 5P EANE LIP i &2 eCa e 7 E# U1K,
H A HLE A7 7E 4+ (Krivolutskaya et al., 2019;
FPRSEAE, 2015) L PRk, EECA KIBIE KRG IFE R
Forb i B A 22 RGP HIE ST LIPs AH 5% R R HRAR B
TAEH RAEEE

Ernst % (2019) R4 45 7 KB LIPs (%5 %
HIE RS, ORI ER X U A RS

Fo N EAIRES BB TR AR SR8l RS K
JEAZ LA Sk @ iE S, KRl LIPs 34 7] e A0 45 iR
PERNE . BER A &R, A4 LIPs FTE
R AV Be: B S e AT o o B e Bk
A B RS, AT Sk RN 7 A TS R A
IyIERl; SR JENRIRA K s ol s A e AT
W0 IR, AR HY R R k- Rk
BN, & e 5. LE g A Sk L A B
2 b, AT Feng il B B k- BE R T IR N AR AE K
ST A AT IE AR ECE oKk (] 2a I A T AE MR
WAL G E A R R AL B, DA Sk s A it
2 Ja A& K AR A 1E Moho THI T BSCRIUASE 45 /) 117 85 8k -
B RAE (K 2aHHIB) .

5= B 7o N R TE RGTE R S,
Sk 1 i IS AE Sk DL Rz 5 A P 1 38 4 J R P 25 S 4k
grin) BT, fEHLFE NIRRT 0 A0 A A T
(Kl 2a FIE 2¢) . &R IEAAE BT R Ha] A 45
fm o AN e TR Y, T I A Y s R R T RE S
R 5T R 73 I A AN HGRAE I A BT DL R IR
JEEPRAMIAR,  FURE 73 73 AT 7K S 2000 k42
2500 km JZ BL4% 2000 km LA . U IR 25 15 3 E
BRI AT, IR TT R4 r) b8 AT Sk 30 i B v
O CE 200, Bilan: KPEFEN A I CAMP JBURHR
IR Z) 2800 km, b3 Mackenzie LIP ¥ 7
SR A RS 42 1 2500 km (Buchan and Ernst,
2021), Wk JE L LIP B JBOR IR 5 555 B = 42 25 400
km (Lietal, 2015) . BbAb, JECHIR S Ba ST
MR LI 5 TR ST s KRR X R, ARITE R
T#, W FRBUERE A O LE TR TR B
48 Csill province) (& 2a H [ D). B8k -1 8.
BREREAE (B 2aF 8 E) PLARE R X BUs
(FE 2b #1f) F) . Buchan F1 Ernst (2018) 3 & X}
Jei st LIP B TT, 48 OB IR S B A ) B>
H T s (1 2 A Sk A da i (& 2a AT 2¢
1) G, T /N BYHCIR 25 S A U AT Rk 3 T g A Sk
O ik B R . ARSI IR A B 0 /N A A
B A R XA % EFHEAR (B 2a T 2¢
) HD . FEEE VUM By, A R KLU 2 ik Hi b
FE SR 7 B ol X, T R B R X A
(E 26D, PEARIEGEAKFE#ILAT
K G W RTE s i 2 s (B 2b 1 B, Tt
MEAEE S Gl R e R, IR A 2 K B IR
ZlE (B2b 81D .
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Fig. 2 Framework for the magmatic plumbing system of continental large igneous provinces. (a) Cross section, (b) paleosurface plan
view, and (c) subsurface plan view of intrusive rocks (from Ernst et al., 2019)
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and Bell, 2010; Ernst et al., 2018, 2019; Torsvik et al.,
2014) . /b Kkt LIPs LAz B AR B 5 B st
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P& F 5K 43 5%, 2020; Bryan and Ferrari, 2013; Pank-
hurst et al., 2011) . IXEEFE KK lE B AR T b
AT P B A 5 3R 03 e T 5 3 0 A R ) e
JEP,  HAS IR ) 58 RIEAFAE L

LIPs & I I 18 22 4t AL 155 20 B AL s 2] e A
WEEHE S O RE SR A R 2 U 7E R 1 70
A, f#FE LIPs AL I 2 v A2 5 0 Bl —B0mt el 7
(lithosphere-asthenosphere boundary, LAB) . & f1
ol g | b RN ML 3R E B SR A I A R R
(Buchan and Ernst, 2021; Ernst et al., 2019) . {HZ,
AT A SR ) 4 AN M ER ) BRI 2R B, M@ AT S ]
RE ST AN LA R, 7 35 4 28 1 i ~F 3 #01R
N 1 A A [ 0 AT TRl /N RUBE FR 48 RO it 7T
XEETREPIR 7 AT R S i S it 1 o5 R R il
e 25 IR T B LIPs Ay B /NS o X A
(Li et al., 2024; Schoonman et al., 2017; Wang and
Li, 2021) . gbAh, BEIRARAR KRG W AR gL
K K Bl = 2 sk 2L # 7Y, Koptev 58 (2015)
R =Y ) AR R, R ARRKN TR, b
FHI¥) Kenyan 18 A4 57 52 v 38 25 A P AR 10 52 0
KA, HISeH 58 Wy by il [F] TR s 5 90
B R R B G G B BV R . X SR 1 e
FEIE B B8 R G0 AT B ARTARAET, AT 32
i KL MR ) 0 A i 125 10 08 A Sk F A it X
[RItE, HObEAE S LE# . LIPs oh SRR N A9
A1 S FE TV BRI A5 B o) AT AT R AT 7T

AP NINDE KRS PNGE LS P

KK A SRR R 26 R 0] OB 3 2]
JG A% (Ciborowski et al, 2017; Ernst and Bleeker,
2015; Heaman, 1997; Peng et al., 2022) . i1l &K {4
BRACLRA T BRSO (1) 15 FE B8 )12 /3 AR 1) LIPs,
HEBRMER AN R EIE L E RS, XERE
2 08 FEVE B N T LIPs B BN VR 5K
T AR 33 A B hilf J8 A g 0 25 #3538 42 (Dilek and
Ernst, 2008) . LIPs & 5 K Fifi 22 fif AT v 28 1R T2 1%
FYIM IS, Flan.: 31 Ma Bk [F) Afar LIP 5 41 -
ATV B A 9% ( Sembroni et al., 2016); 201
Ma Wi &[] CAMP 5 7% &5 37K il (1) 91 46 2 Al AH 5%,
i BT VERI 4T T (Davies et al., 2017); btk
ICHEX 1320—1300 Ma KA ME SR 25 PR ALK
K| ¥ Derim Derim-Galiwinku LIP J& T [6] — > LIP,
7E 1300—1220 Ma 4k 5 4738 -5 A6 A FI WE ve F

o185, A RLIE N EHE LB KPR (Zhang
etal, 2017,2022) . {HZ&, HETFZEEKKEE
B h B R IR E, B PEAARNE S by s
215 7 PEAARE LIP £E 252—251 Ma [ % (Rei-
chow et al., 2009), 477 wehiilZ& P 7 W& (L LIP
7E 260—258 Ma [1J %% & ( Shellnutt, 2014), # 5
RIEHIEL 7 K LIP #£ 290—280 Ma Wi &
(Xu et al., 2014), 74 3dE Kaapvaal 5 $718 f 2060
—2055 Ma ] Bushveld 4% % & (Bryan and Ferrari,
2013; Zeh et al., 2015) . iX4E LIPs [N 2 AR K,
FEAA [FIAL G A T Hh 08 A 5 25 A P PR A E A R
ARFEZER, LIPs AR A MARTA R voe K
BRI N R,

WRAE 5 J1 ok, Fitton (1983) K A Bl 24 A 4
NEBRBFIG AN TR FE R BV
UKl b7 A B KT L I 5 ek v RO o A
RI N A B ER 5 RIRE KLTES), TR
RN, B R AE R YTRE s TS B X
sk FECE AEMRE, MR, KR ER
Frazatth, 47 2k BRI S SO YR I, KL SD
(7 B[R] B 1 ki P9 A L X — 0 2R B AR IR
Bl 245 T L AL T B LR, (H 28 T KRG
FAETERGE R )3 A0 R AR 45 1 Fl
WAL DT s i 25 S ik, HE DA LIPs 5 KRG 24
MR ARK R,

Koptev 1 Cloetingh (2024) #R#% & 4= H LIPs
5 RBERAR IR KR, 4 LIPs 40 /83 AR
K S HORREZMA LIPs FX N “ EE(H” (LIP-
Shirker), f#4n: VAR LIP. k)5 11 LIP.
HOK LIP. XU X BAR K E T KRB X B
S FE ARG Ny, ER s RLE A PR R E . T
FE LIP J2& 43R OKKE bt EE A KR K s
T RIS AR LAB MR, T RO fIR 1 Sk
PRI AN S FIBIE, 252—250 Ma W IR 2 R
Ea ik N E (SRR A v S it (R A
( West Siberian Basin)+ Taimyr ¥ 55 1) KX,
TR £ ~5x10° km?, {H2 PG PO A9 I 2448 RAE
=S EILE ), TEShEEZ 10 B, A
it %A 0 BBl 4% (Nikishin et al., 2002; Reichow et
al., 2009) (& 3a) . BR B AR A & (Euro-
pean Cenozoic rift system) HIATE A HK A AL |
IEART] LIP FIARE, (HAER MR N 137 i
Me LIPs y AL #& fit 7 2% (Koptev and Cloetingh,
2024) . ERA RA T WO ATFE, Ak
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K3 BEUARIZAA LIPs (A 9265 (5] H Koptev and Cloetingh, 2024) . (a) PEHF)IE LIP ACH B Lips, 5 K
R N RE R X RS E TR KL R AR X A AR E PSRN LIP YE R, 2448 19 43 A 3R B Hubg A Sk
WA AEZANRRIEE, HEFEAERAABREM; (b) T LIP AAREMI LIPs, {F 66—64 Ma Hhig: S5
BIRHRE JLLE IS, Seychelles foiftiBh 5 BN KB fE~63 Ma 4%, Réunion #\AUITR 1 KB . VR IKEIPI 8,
62—40 Ma Réunion # 15 Carlsberg FEHHAHTAEM, 40 Ma 24 Réunion # AL TR T

Fig. 3
(b) Deccan LIP as a LIP-Producer

TRIE M TR, AR R, PRE R
i ®E . Bresse ML T . 3F P V] 45 i B2 A Bger b #T,
SACEEZ) 1100 km. 2637 IR 2= dogr i, BEE B
FRRITAE I OCH, 2 DXOR AR DT R, 3
REEMIEOOIETZKE, Tt ORI 2R
B ARAAENES, T A Ry R R B T A A
rhoBT B R Bl AT R TG U T 6 ) AT
AR ol T B BT AR AR R A RN E A R
80 km, MBFRKFLEFET:, (HRA AR EA
id 7 km (Geissler et al., 2010; Sobolev et al., 1997;
Ziegler and Dézes, 2005) . Flith, i /)3 2 %
PN TSN

Koptev #1 Cloetingh (2024) ¥4 7F K Fifi 24 figt i
T R BRI LIPs R 43 “ZfE %7 (LIP-
Producer) . “ fil & %! ” ( LIP-Trigger) « “ W 5l
A7 (LIP-Attractor) . Zfii Y LIPs Xf BT K Fifi &
Z ik Z R (Fitton, 1983), R T+ (1 b8 b v i
T ORF LRI AL B AN (8], MO ATE T B A RS B

Typical examples of LIP-Shrinker and LIP-Producer (from Koptev and Cloetingh, 2024). (a) Siberian LIP as a LIP-Shrinker,

A A 94 5T KBRS, KGR AT 1A
o PEL DR R A SR R R b R B A AR b T M b
FESkHS 07, Hlin: 66—64 Ma )4EF LIP. 93—
90 Ma ) ik ¥k o LIP. 3l 77 S AR 046 7~ T 24 1t
A1 LIPs (178 RAL . Hi b A X 1 78 5 A B i 1
AR RS 75 A B R AZ 9 B2 (Davies,
1994; Heyn and Conrad, 2022), Titsfi5 gt —4
StE AR, A X S 3 5t T 2 BUE A B
fi (Koptev et al., 2021; Lavecchia et al., 2017) . A
8 LIP 1 (I 3b), Hrdre v 2 m Jb FF 42
A5 = AR AR R iz A IS 7 B B RE K B o B Ak T
TRERLIKN. SR, 7E 66—64 Ma {81 KB I %
AWK Z G, 5940 0 B BE K ki B B £~63 Ma &5
Seychelles T fiti B 43 85, KA KFEZEf#, Carls-
berg FEHEFTIT. A8 JE R IR 2 U AR
AT Sk R el S R K A, T AR LIP 5] VE R
(1) — ZR A I D) b 8 A R 3503 5 Rk 72 o (1Y) Réunion
METE R A A B IEL L% (Koptev and Cloet-
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ingh, 2024) .

fish 2 Y LIPs X BT K Bl 5 2 7k 244580 (Fitton,
1983), H ARG HINS A0 T KR RAGEH, JF
& A0 BB FV R L B A, RISPAT T &)
K22 b A, Rk, il Y LIPs B A KiE 30 H
NN T 5 A PR B B3R JRy AR v, i R K ki
filt, FEASIE KREZLMR M T4 K 2. il & BY LIPs WK
Z BBl 9 RS AE F AT Rep R R AR b, TR R
Wbl N A IR IE LIPs e 32 5 ALK RE R A
Iy A B2 2% &, ~201 Ma ) CAMP (& 4a) .
184—182 Ma ] Karoo LIP. 132—130 Ma f¥] Comei-
Bunbury LIP #J& T-filt & & LIPs. /£ CAMP Fil Karoo
LIP WA HT, B e X IR REH C ARS8 731+
B, A ARSI UL, 7E CAMP 15
RIG#) 10 Ma, HRVEFHET~190 Ma 1, Jbk—
AP KA E AR (Sibuet et al,, 2012) . 7E
Karoo LIP Wi & J5~15 Ma, FIE. mRM. Dikhn
0 £ 168—164 Ma 43 JF ( Mueller and Jokat,
2017) . 5 H % Kerguelen Hh 18 # 1% 2 £ 1k
7 ~130 Ma ] Kerguelen ¥ Ji& = )i ( Bredow and

(a) R TEVEA S (CAMP): il & Y

Steinberger, 2018) A1 132—130 Ma ] Comei-Bun-
bury LIP (Coffin et al., 2002; Zhu et al., 2009) . tx
P @ £ W], Comei-Bunbury LIP 5 I & — K |
W (Williams et al., 2013) FIEIE—Fg %M (Gaina
et al., 2007) [IHIEARLMR FIIN R A, H 2 AZHBIX 1)
KEHZAAE FH 4R T~160 Ma (Seton et al., 2012),
7 HF Comei-Bunbury LIP [ B [H].
5 2L fif RN figh ke B LIPs A ¢ 1) K il S A 18
AAEHIERE ETHIX, B SRR RCE KLE S B R 2
(volcanic passive margins), < J& M FEEY kK,
TE TG K& B K # 8) i 2% - (non-volcanic passive
margins) . {H/&, 5% LIPs FI{EANR 51 52
AAAERIRPEY SR RE. Blhn: Afar LIP (HBFRONIRZE
ML S 15, Ethiopian Traps) VA Afar Huij2
FE7E~30 Ma 1 K BE 44 @ F 444 (Hofmann et al.,
1997, AL T30 T 18 78 o 14 76 K Ll AR FH 4% 2 il
ZIF T 19—17 Ma (Leroy et al., 2004), Z&HF
~1 Ma JE I T Afar =Bk SR E KOl iE sh 3 8)
fi%% (Ahmed et al., 2013) . Afar =B 2 413
B T BRI ARIERZN AL, L

(b) Afar LIP: W¢5|%Y

o  AEM
[ LIPAIG A L
P O AR N

o (O WA
—

» o R

[ZES

* LIPHIXAY
"B e
. EEA
= A i
— i

. R
e AT
— PHITE

AU

AL

Mo

B4 ok RRL 51 A LIPs (82 524 (5] B Koptev and Cloetingh, 2024) . (a) I RFEFEAE KA (CAMP) Uik 7Y
LIPs, fEJREEAETT, 2N RGHEH: [FB VG 3) 2 8UE KIG3N B8, ~10 Ma 5 636 -FE M R b8 2248,
FH B AT i R R 0 AR R AR R PR E TR IR 1 1 & K L& B3 2% (b) Afar LIP AR 51 B LIPs, ~30 Ma 2
FEIE 3 5 BUR A A B SS X 45 T Calsberg B RIKFY T M, fFF T E 19—17 Ma JE T K LAE H 3 5)

ffi %%
Fig. 4

Typical examples of LIP-Trigger and LIP-Attractor (from Koptev and Cloetingh, 2024). (a) Central Atlantic Magmatic
Province as a LIP- Trigger; (b) Afar LIP as a LIP-Attractor
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THECKEETR, MARIERREBTIA T KGR H
Bt. Koptev Al Cloetingh (2024) # il (5 T ~30 Ma
(1) Afar 1008 AT V5 B A0 178 55 A Bl o i HL 5 FE %
i, X—AAREEEX “Wgl” THKET~63 Ma
[ Carlsberg VEH A M PEY &, HH 5 EEEM—FT 7
AR B AE~20 Ma 5 0 T 5 R, AT AR
19—17 Ma JETC K IR NG (B 4b)

I 4h, Koptev fil Cloetingh (2024) 5 % 1 Pl
ZR AR RS SRAFAE N RS AL LIPs 434 “ E 5
4”7 (re-awakened LIPs) F1 “ JiHE A ” (dormant
LIPs) . & 75 LIPs LLIE K PGV KA 4 (North
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Atlantic Igneous Province) A, A4 B 2= 5 56
a0 b R, POt MR RN EUR BoRik
Wi == PEEB A 0 &t 5E A SO b 8 A B, UK
b8 A R I B ACE R E (B Sa. Sb), X
BIC T UK I 08 AT A% R 22 B 52 (Celli et al.,
2021; Lebedev et al., 2018; Rysgaard et al., 2018) .t
KPGPEK A B T L B RREAAESHL, Koptev
FI Cloetingh (2024) £l vK & 118+ 7£ 90 Ma #t
CAMTHE =BT, APy 90—
60 Ma VK& HEAE A PE R ZR 2 ad kg P 22 0, {Ha2 i
TR = B HCE A AR R, M@ A AR

LAB £ £/km

e

2 L) |

S

=250

=200

150

100

~60 Malibp i 2
e SRRk LAl
‘:’ o P

[

British
Isles.

Baffin{

ElESyl R

A A

Moho

t

UK A

~60 Ma

e o ¢ ]
~90 Ma

W MadhMGOELRREENETS, SGOLERINASHIPEFH: AR: Aegir; BR: Baffin Bay; KR: Kolbeinsey; KnR:
Knipovich; LR: Labrador; MR: Mohns; RR: Reykjanes. i&#77: Am: Ammassalik; In: Inglefield-Melville; Na: Nagssug-toqid-

ian; Rk: Rinkia.

AERPGRE KA B AR E TR LIPs. (a) JLKPUFEDIRMIERTE (518 Celli et al., 2021), JbIeHRERS W BR B DAL

VKSR PGEEREEON, BR R R R S B R RN kil s, il T KB R R G s g sh; dbk
FEVE S W ENT B TIAE (b) 36 km Fl (¢) 150 km IR /K FYI A (5] B Celli et al., 2021); (d) 60 Ma LKl
PEKRE BRI LK S ST E @R, ~64 Ma Labrador PEHT AT R Bk 5 22 P54, 62—58 Ma JE % T fH Baf-
fin & -8 K5 B =2 A0 British 3 =40 K la s (A EEED HSdtRiaee ka4 (51 B Koptev and Cloetingh,
2024; Lebedev et al., 2018); (e) 5T H UK & MM A #44 J5 [) B [0k 8 =2 7 465 R R 5% () Rl T 2 A BBl 8 1) 351 T s = I

Fig. 5

North Atlantic Igneous Province as a "re-awakened" LIP. (a) Simplified regional geological map of North Atlantic (from Celli

et al., 2021); Horizontal slices of S-wave velocity anomalies at depths of (b) 36 km and (c) 150 km (from Celli et al., 2021);
(d) A ~60 Ma reconstruction of the North Atlantic Igneous Province and the Iceland hotspot trajectory in the Cretaceous (from
Koptev and Cloetingh, 2024), the lithosphere-asthenosphere boundary (LAB) depth is based on Lebedev et al. (2018); (e)
Schematic profile showing the coeval flow of "re-awakened" Iceland plume materials towards the thinned lithosphere in the

western and eastern margins of Greenland
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ZHkiESh, B3| 64—56 Ma 8 M Labrador
Sea ¥ J& #| Baffin Island, V& X ¥y i@ 45 4 4 “ 7
YR 7, b FA ) IO [R) BN [ % B =2 B AR NRA 7
0] ek 75 1) o7 A PBL IR B, 62—58 Ma £ Baffin Island.
VG 4% 42 == 3] British Isles (] KM X B E T KA
T X A IR A B, TR E KA,
B J5E 54—53 Ma 5% 22 5 SRR KRR, Jbk
74 £ Reykjanes—Aegir—Mohns 7 # F1 H ( 5c.
54 EAERERE, EESAB T R Hhg
FERA I 2 PEE Y R B 7 A0 P e R (%) 52 1 T PO
TR, A R X R AL LIPs, X —IL %
AIREAEHL BT 2 B2 O A, IF S ik R R AR 5
4 LIPs H#fl 2 &b (Koptev and Cloetingh, 2024) .
filhn: B4 WK R A, 2200—1800 Ma it
MR FEAZ S S IREE R RETS K T 1800—1600 Ma
REE- g AL B, JRTE BERRIER T 24
LIPs (Peng et al., 2022) . 17—16 Ma &} & kb ¥ 3]
LIP 7] g8 5 8 A Hubg #: 70 2 75 A 5% (Hooper et al.,
2007) .

DUBETR LIPs [ Mm@ 44 B 4R 75 0 78 2 AT % -
R UUNANEE S B AR 5, (HR MR

ok ok, Flan: PRSP Manus SRS T 7
FIBEAR M 124 (Koptev and Cloetingh, 2024) . U5
A G s b ERE) )2 56 A, DURERY LIPs f) 3 8 4%
Al Re AR N R Y. R RN ERY LIPs 1528
MR ERAFER Z AT ENE, THFEH Z5L6Nz) )
AR AT R

3 KK B X i 78 45 R4 PR 52

BF 78 LIPs Xof il 76 45 4] 14 52 i) AN AN 75 S0 o Hh
KA FEE BERE 0 A0, JE TR0 T 52 1)
’NE. 5 RZEM G A, SEk-BEE IR
NE BB IE MR, G Bk B 55k}
WU LIPs AH R [ KRR e e WIR NG B3 | 4
fii ( Thybo and Artemieva, 2013; Wang et al., 2013,
2016) . AL, AR STk BRI SRR FEAR v R A L
LIP. PU{fF]E LIP Fl CAMP, 454X S [X ) &
i B 78 R 4 1, 0 B R SR RN ik 2R LIPs X
R Pl b 576 455 4 1) B i)

31 EBLXKKERES
UEJE L LIP AT A R AR B 2, HBUR IR

Rl X A 7 o 1 7 e b s P G A —H A
MR 2%, 324 IL—2L] R0 7 34—17 Ma /2
TR WIS, oS L LIP ¢4 2 2R AL
#B Song Da Hi[X, U5 1l LIP % 4 i A5 ik 0.3
10° km?*, AF127 0.6x10°km® (Al et al., 2005, 2010;
Shellnutt et al., 2012, 2020; Tran et al., 2015; Xu et al.,
2004, 2010 C1& 6> . WA L LIP AR X #lE N
T, A A B P IR A KL A SRR
EPE-EEMRNE . PRERECE, KA E
e ZE M DA KA 2 bz 00 A 1S
i i 2 A P JE L) 700 m, 78 5 )1 X )R &
FIIE S km, 2R ER AT AN F] 100 m. RS E AR
REWEF RN, WRJE L LIP W5 B R 257.6—
262.5 Ma, FJRESE T ~260 Ma 8 4 IV 45 {iH
KA K4 AF (Shellnutt et al., 2012; Yan et
al., 2020; Yang et al., 2018; Zhong et al., 2014; Zhou
etal., 2002) .

B ZR, 5 OHKE 2 EH T, BRTE
I JE Ll LIP WEA AT 5E R A2 1 5 BRBI46 T iR
o KA BRI AR BE DR JE (L LIP 7 9. s
(RJZEF A, 42 200 km) . s CGHE 2 3k
i, AR 500 km) . A Cly XA 58 B0 B TR
(8] 77, 4% 800 km) (He et al., 2003; Xu et al.,
2004) (K 6) . fEMEE MM T &, W8 LA
R FF Song Da X it I T ¥ MUA , MgO & A
14~27 wt.%, RER X ulia & MU A i i iR
AR 7 B A L, —F AR Mg A LT
TEmR T (31560 °C) KA AR FESERI =4 1M
Gl F R F ek 2, RREARTHRRE
Ao PR 0 R S PR P B 20 i, s Rl 2 <1 500
°C (Xu et al,, 2001; Xu et al., 2020; Zhang et al.,
20060 . Uk JE L LIP 20 lia B o) B 70 18] 22 A0 I 7= 4
AT S H b7 B A LR S, @A BT R
BT A R S ERiE, S B @A e
X 22 J3 1 50 S A ) i I . [0 Py S0 TSR PR B K It
BT 2R X 5 W i b 5 1) i K B T X — B
I AR E MCE WA X, SR A AT g b @A Sk
EAEFEISMIX (Lietal., 2015) . WJE 1L LIP RN
B RS T ENACE T B N ERA X, ER
FEVE B E S AR A AR AR LA, TR R T AR
BN MPLERREER T R IX CRU 2 55, 2018; Tk HH 52
%, 2022; Zhou et al., 2005) . F4h, A A B ¥4
BB - TTRIR, ARSI A W An R
Noril'sk (Zhang et al., 2009) .
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2 B — R AR B A ARG B R A e,
ek = SR AR R AT R A
Wi U)F ], HpRiL S A LD R R

(b)
\ FAE—H b A
%
Ly,
o
30°N
.

(5336 m) T —= Line3
e 1>™
TRTIZ

Fiviieas
ETiZ © 5
EdnEiiyzs %,
| ———]
0 Rt
|
100°E 104°E 108°E

B ez ] o ceimes A

IR JE 1L LIP RA a7 B DA s s oA . (a) WkJE 1L LIP B & (5] H Tapponnier et al., 2001), A 77 HE N 5T
X. (b) W/l LIP R3S X B0E AR SUE 72046 (5] H Huang et al., 2022; Xu et al., 2004) . G4 28 NI JE 1L LIP (1)
Wit s A A, B)INEEFRRE R R A I & 4 E KA 9 B Line | WA 1L 454 IR ELHITE (Chen
etal,, 2015), Line 2 JYRNYL—% 44 % 1 7B AT 51T (Xu et al,, 2015), Line 3 Jy 2 LA E WA HI T (Liu Z et al,
2017) . LXF: WR{L—/ i i 3

Tectonic location and distribution of extrusive rocks of the Emeishan LIP. (a) Location of the Emeishan LIP (from Tappon-
nier et al., 2001). White box is the study area. (b) Distribution of flood basalts and rhyolites of the Emeishan LIP (from Huang
et al., 2022; Xu et al., 2004). Dashed green line are the boundaries between the inner zone, intermediate zone and outer zone.
The Binchuan petrological column represents different units of Permian extrusive rocks. Line 1 is the Emeishan integrated
geophysical profile (Chen et al., 2015), Line 2 is the Lijiang-Qingzhen wide-angle seismic profile (Xu et al., 2015), and Line 3
is the virtual deep seismic sounding profile (Liu Z et al., 2017). LXF: Lijiang-Xiaojinhe fault

AN, VALt IR TL—/N i W2 A /N T
BN TR E W22 XA R O T B Ak, S5 E
th LIP A R A &, W R M 2 G s i 2

WS LIP 4 2 287 B AR

F R ARG HAE H (Tapponnier et al., 2001) B
TR B E EA - (Royden et al., 2008), fE
2] 16—5.5 Ma M ZEAT EM AR N AT EW, FHHE
B TE 2% o A 2544 T i A 41 (Leloup et al.,
2001; Schoenbohm et al., 2006) . R 3% Hb 5= 4> 4 Al
GPS M, 7 ehi@mrs C 4t AN ARG

T Pt R VBN PR 5. % T R e AR R kb 7 4
Ky 5ASTEIRIE FE AN, )1 DXt 570 5 ) PO [ AN
B —PEAR S, MRS (L LIP (Y b 52 B A i
K& S & O fE A L BR 2 145 55 (Bao et
al., 2015; Huang and Chevrot, 2021; Li et al., 2020;
Liu et al., 2023; Wang et al., 2017) .
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MEFS U (L LIP 30 52 5 48 7R 1 Hb@ A ) 1
FEEE IR RS HORE M. YR AESE 27°8) P ok e ek 565
7R, AT R AR AT R R Vo Vg LB #RE
i B4, Moho THITE N 54 50~60 km, 1E P 4=
i 2] £ KAH 60 km, H 4N 40~50 km, b7
H~40 km (& 7a), i Vp/Vg ELAELE NN 1.75~
1.85, Hii N 1.70~1.80, 4tk 1.65~1.75 (& 7d),
R B A M A TE BN 5] RS A SR RAZ A P (1 1
FeINEH B eI PER 3350 (Chen et al., 2015) .
LU bR B3R A5 1) Moho THI 5 Xu %5 (2015) @I
T — 7 BT A B 2 5 TR PR DU SR AS (0 M 52 P gt T P 45
F—2 il 76 Fras, WA LIP 9459 Moho Tf
REEN 47~53 km HREE L%, T HISE P s L
FRERIANIE N 6.7~7.0km/s, FENTTEETHEN 6.9~
7.2 km/s, HHhFESFEYY P YE N 6.2~6.6 km/s,
N R TS T 0.1~0.2 km/s. 2 2R B K43 1)
Moho THIVR & 55 AR 4 A b 25 75 57 A Adry S84 5
()45 AL s Rl BE AR — B, (LR YT AR AT 4
KZE (F 7¢) . KA 7E = 2120 B 3¢
W T e, HEN AR (B 70, ATReE A
PRI AR TN T RS A K.

55 AR S HIHE (Xu et al., 2015) #75H)
S 1L LIP P97 Moho [ EFEAE, LiuZz 2§ (2017)
1o FH R UL b 2 B 77 726 Chen 55 (2015) %%
PEE A, R BUEJE (L LIP 973 R 7 60~70 km
IR BEAATAE — SR RS, ff R 9 N JE- 1 72 1) Moho
T, RIS 5% R AE A — AN B IA~17 km [ 57 38
wm s (B 7e), B UHME L LIP 5 K
HAIA (1.76~3.2) x10°km, 5IE%H LIPs %5 3%
B8 Hu %% (2023) {8 FH>750 4> %6 MiHh 7 & 1)
P R S R AL, IRAE 1k JE (L LIP A AR AL
77 171 1] Moho T HH -2 14 55 2% A= in )& 21 ~60 km,
JEAR BT M5 e S AR R B 15~20 km, AR
PEFTAIHCEE Y 150~200 km, FEAEH71A1KE~400 km.

32 MAFTRAREE

PEARAE LIP 23 A0 T P R s hid . 7 P
P Z M. Taimyr ¥ 5. Kara 1 Laptev #§, T
I 5%10° km?®, AFZ) 3.67x10° km® ( Augland
et al., 2019; Ernst et al., 2021) (/& 3a) . FHAAF I
i, H R TH AR 2 4x10° km?,  FEAHFINE LIP (1055 H 5
B T VAR B L 40% HITH AR, 08 A I
PR EFE N 3500 m (SR> 6 km),  [A] 75 B U7 )
ALK, AR PR PR R B TR E R T

ZoE A R L. MR A B L £ 1 (Rei-
chow et al., 2009) . PUfHA|IE LIP /4 T KE K X
B R4 4 (Reichow et al., 2005) . K 1l 7 8 &

(Jerram et al., 2016) « KK ILE PLAA T AL A B
% B AT A 350~1200 m ( Svensen et al., 2009,
2018) . ek JBE 52 A A5 SR TG R LIP ) Pk
WE RIS IAI N 251.3—252.3 Ma, $8 7 — B8R EWK
KAiFAF (Augland et al., 2019; Burgess and Bowring,
2015; Corso et al., 2022; Reichow et al., 2009) .

PEAA A M v 37 38 75 58 1) Tunguska 725 30 o 56 7]
e 2 PR A LIP B K th v 2 —, X BN
Noril'sk ‘K 1l . Putorana /5 /i . Maymecha-Kotuy-
Lower Tunguska P4~ X 35k, &AL Z) 2.5%10° km?

( Reichow et al., 2009) . Lower Tunguska 1t 1
Putorana &5 R A AR BB Z iU, Noril'sk
KA Rl U E N T, SOhEEME . Wt X
a2 g, A Kl E 2 8 )8 2L 3.2 km.
Maimecha-Kotuy B AR EELR A A XA
FH T 2 ECE AR T, DA SO SR BB R o A e A
. AE NP R]E LIP 25 Ol TE R St 1 4 G 4
]z 0 A T Tunguska %53t A JH k100 54 T )& TAK Ti
ZHEM IR Z s, ARARALE] E e 55
RAEKEMEAER, TERCE 5 KA iR K

(Callegaro et al., 2021) .

VAR e 38 KR 7 M X 7 i 1 LT oK IR
VORZ S R B A0 e v o AR 2 A 0 22 e H AT
Hi 78 T Anabar HiJE& . 7R Jb 6 Olenek =rth . 75 5
Yenisey LI« PO Biryusa #idt. K& Aldan
HbJ& A1 Stanovoy ik (& 8) (Cherepanova et al.,
2013; Rosen et al., 1994) . 1.8 Ga LIk, PH{HF|IE 5
EUBELYINEES (R (e SN S P QI A
PER, TERCT — F AN S b ) F8 2 i A0 s i 12 2
HH, Flan: T 1.73—1.68 Ga ) Ulkan-Bil-
likchan b %% (Larin et al., 1997), # 1.53 Ga {£ iXi
FAZR AN Urik-Iya #1%7 (Gladkochub et al., 2002) .
BEN AR, 5 08 R A O 0 B e A 0 AR

(370—373 Ma) 23530 1 9440 AL 52 438 < B
#B, TERLT 12~14 km IR Viluy RAEEHL, 78R
JE TR AR HERR T 7~8 km EMe AL — N A
MR, R Z AR I RE A K& R Bk i
AR 5 E K AERA (Courtillot et al., 2010; Ricci
et al., 2013; Skuzovatov et al., 2021) . YIFR{EFR{E 1L
T &, AR LIP BR. XEWRES
Y r s L, PEAARE R 1 2 g
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Multidisciplinary geophysical observations along the E-W profiles across the Emeishan LIP. (a) Migrated image of the crustal
structure based on receiver functions (from Chen et al., 2015); (b) Crustal P-wave velocity derived from the wide-angle reflec-
tion profile (from Xu et al., 2015); (c) Crustal thickness derived from receiver functions (blue circles) and the Moho depth esti-
mated from the Airy isostatic equilibrium (green line) (from Chen et al., 2015); (d) Vp/Vy ratios (blue circles) derived from the
H—x analysis of receiver functions, and heat flow (red line) (from Chen et al., 2015); (e-f) the new Moho structure with the
unusually thickened crust and the high-velocity lower crustal body (HVLCB) (from Liu Z et al., 2017). Profile locations are
given in Fig. 6b
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Fig. 8 Simplified geological map of the Siberian Craton (from Rosen et al., 1994; Shatsky et al., 2018)

FEVESN, WA R ) = B 20 A S D AT % B XS Hb 52 2
R R SR & — A AL

Cherepanova % (2013) Z37 1 P4A R Hh 72
S5 R SibCrust, & I VEAH A V. v h7 38 A2 5E X Y
Moho i E N 38~45 km, #HLX KPR 2R
FEARRER R, b AR TNHER R REUEE (%
2115 km), M PG4 F] I 5 $7 38 Tunguska 7 1
1 2] Markha Hi 4, T H 52 R H L S S 2
(Vp=72~7.6km/s), HJERAIE 12km (E9) .
PEARRE SE b id MR ¥ HLJE [ A0 TR RRAE,
A e JE R ik 250 km,  7F Tunguska 743~ 7
100~200 km ¥R EEAFAE B HINE S 75 (Artemieva,
2009; Melnik et al., 2015) . Wang 2§ (2016) R ¥
VO ARSI 7 308 <A R 485 5 10 2 A B AR vy i
JE T BVEAEGE, B SR e =
BAMTARAE. KRS . B AT AR
B, T Moho THI BT R AR LK K 2 3
FIRICAR, T P AR R S by 8 e ) R e A
(Vp=183~8.6 km/s) XI N T I A F a2 7 111

M s, ATREAER T S PUAA RN LIP AR R KA 2 53

18t7F (fossil magma chamber) .
3.3 REFERE (CAMP)

£) 201 Ma W% & (1] CAMP 234 BRI . E

Jb 2 U A0 R 3 U R BA R VE M X, T AR 2
11.28x10° km?, filt /A2 1 7 75 SV Kt 2R 88 A0 K 7t g
T (K 4a f1E 100 (Emst et al., 2021; Koptev
and Cloetingh, 2024; Marzoli et al., 2011, 2018) . 5
Y% LIPs A, CAMP PAZ i Al X oz (h i
KENT, GO RBIR NS K E (Mar-
zoli et al., 2018) . HR#E T JLE A Sr-Nd-Pb [FfiL
R, CAMP it X ula . A MG H Al 70
Tiourjdal. Prevalent-CAMP. Holyoke. Recurrent.
Carolina. High-Ti 7SN, 7 5 AN VARER K
(TiO, <2 wt.%), &I 90%, i fE a3 A
JbFR P A AR B 2 ) m ARK B TiO, > 2.1 wt.%
(De Min et al., 2003; Deckart et al., 2005; Merle et
al., 2011) . Prevalent-CAMP 4] 32 43 #i, it e
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Fig. 9 East-West crustal cross-sections of the West Siberian basin and the Siberian craton (from Cherepanova et al., 2013)

HE AR HIL (F 10) . CAMP &4 b 52 Ffk
RGP EAL (<10%), CAMP X R A K HiER 1k 2
FRIER WA SRR X LA 30 L g N 3, (HREHAH
BEMAS S5 K Ti KA P HUEYE X 7] 5852 2
MR G UCR A RRE A, T T KRR T 8 YR
XA KA e o2 & 45 20 4 1 oT ik (Marzoli et
al,, 2018) . HAERMZ, 160—120 Ma FE 1K
VE 7 R PE S R AG FRFIE S CAMP 15 Ti KO
% A Ontong Java ¥ i /= B AHAL, 3 B L8 4347 it
FReEfom 7 WA KR PE v L i8 (Janney and
Castillo, 2001) .

5 JE 1L A0 AR A LIPs AN[E, CAMP (R4
FRTIAUA IR, DU BRI 55 5 A B RRAE,
BoE A AR A B S T HCT k1) X
(fldm: SR, SH, FIHET., £TH,
BV, BANAEMPKETESRE TR (RKY
800 km), % EER[IA 300 m (Fltn: PEEEA . ik
F . BRI E . BTUR KA. EE. nER. B

VB . BN BE RN SO TR T8
HEHT km® (Flan: RE. EIEF ., KE. BEE
B BTR KR S BALA T, EFEILHT S
b 7 b ) A S R AR RIS B T 1x10° km® (De
Min et al., 2003) . CAMP & ¥ ¥ &) ) % #1 y 201
Ma, XN T =& L—AkTLLT, FrEEn N T
1 HE, AR =S DREVRKALAEITHE
CY ( Blackburn et al., 2013; Davies et al., 2017;
Marzoli et al., 2011), 1My B & ¢ 36 20 W) 4 2 3|
192 Ma, it A 2|5 £k % Sinemurian B ( Marzoli
etal., 2018) .

Fg KM CAMP LA T LW E . W5
b % Hb . Guaporé #fi J& . Parnaiba 7% Hi . Borbo-
rema 4 FIIE I 4E WP 122 38 Wi 1L ik X (Marzoli et
al., 2018), AT="FZA /Wi rohil. Fg3E CAMP
KB4 HUIX ) 1 58 SR 2 35~40 km, {H IV Hidh 57
$i7 38 7R 8 b 5 JB B AT Ik 50~60 km ( Assumpgio et
al., 2013; Lloyd et al., 2010) . F§3E ¥ CAMP H Rijit
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Fig. 10 Schematic map of the Central Atlantic Magmatic

Province in the Pangaea supercontinent (from Marzoli
etal., 2018)

BHEMEEEREHELR, SABEE KN
~160 km, ZR#iX£~200 km (Feng et al., 2007) . ¥
AR b fE P A, R ZHBIX 200 km DL R
FERT S B BERAR, WSRO B3 (Celli et
al., 2020; Feng et al., 2007) . MR 3i& Aii k% 5 /7 7 3 1E
T, T 3 v PR A T R AR N B T 1)
oo AR AERES, BB EFL 3x10° km?
(Rezende et al., 2021) . £k 3& 7R Jb ¥ Hartford 3¢
BTy, PRBEE R R AE N TR 1 R
(Vg=33~3.6 km/s) FEEK FHI5E (Vg=4.0~
4.5 km/s), I HUFE EE R E AT RE S CAMP [ 2%
JEIZ A3 (Gao et al., 2020) . i £E AL 3 Kt 45
— &4 South Georgia %4+ 7 Hh 11 55 £ i 555 Hh 7% 51
R, ERA TR Moho i EFE, HiFeimiE
I H FHAE B sl Z AR A I, XBR T CAMP
TE LA 125 2R3 B AR T 24 R ek e 5 501 12
B EEh (& 11) (Marzen et al., 2020) .

4 TF W

41 RAKEEEERBERENIRGIES SR

Pearce 5 (2021) Xf4ER LIPs B3 M I& & i <
A TEACE R i ER AL 22 B AT G o, R

HHAHMFE K LIPs (“no two LIP prints are alike”),
X ERAE IS AT RS AT . A A el
SR K2 57 S LIPs 15 IBiE R4 4% B0,
Eih R H L AL, XF LIPs o R Hb AR N A 1)
AfF TR AR A PR AR = RO TR LS P B
7. LIPs i 5E 4 o1 20 BB AL A 8 LIPS R N5 5
AL, (FRAFE 2 e, M UJE LI LIP [
FeEER R IR R T AR Moho TSR R #5785
R AR AT (B 7 L JE L LIP S R R
FUTE AR B P A Moho THI BB A N Hb SRS R
0 (Chen et al., 2015; Xu et al., 2015), &=
TN TR — B, B R e T E
b 52 0 JE FHT B Moho [ % % (Liu Z et al., 2017)
AEG, & mRE A B 521840 B4 A
TR IRAR 22 RN AR JZ e B 455 W JE (L LIP 5 A
P M2 (Y 45 0, A S ST R AR S e A
W55 % (Wangetal., 2024) .

ST PEAAFIE LIP (& 9) Fl CAMP b 5245 1)
(B 11) #WFFEE Y, Moho RN 5 T Hh 58 & ik
SR B4 AR AT BE S — A M XK A ) 4 R
( Cherepanova et al., 2013; Marzen et al., 2020),
FEATEHEAS LIP 5 KM IE RGHEA M LR R (E
RERRA, EFARDE 5 HE 5T R B &
TESEH, TP PEAE R A S R R, ok
Fiti i o % s £ B SR A PE R el , X R
T PG AR AR S b 08 A Sk AL T P A R v R R
{2 K i R A FH 3 22 R A A 78 1A A R I 725 . 3K
— LG REE BT PAARINE LIP KRR 25 5 sk
SPRCE SRR R 7 A KM B aEE (E 2),
B HIE A S T AAE 2 MR R R (3D .

A LIPs 5 OKRG MM S REKH: W
Tk DEE RSN /) 2 564 (filtn: LIPS VRS A
(R A Rl 5 i Ar, KIAFRE A A B I AR hr ik
73D, BPfgEiiigs: b T 8E SRR X A WK
M Z )RR AER, WA DU KR 27
(Koptev and Cloetingh, 2024) . AS[F] 28 & LIPs f¥)
FIRIEIE R Hh e AR bk P S A T B
J1 5 A SE NI 75 2L 58 22 3 50 SR B ) S A
for s, =4E3h ) BUE B R B, 7 8 A HE A
LAB Z Hi, i@t Fime S8R5 ARG I
T AT 5 5 A el A B E P 23 i sh g e, {2
B, IR T TR A R, MR A
T (1 e i R A R~ G RN 286 (8 o T 34 K
(Wang and Li, 2021) . He % (2003) & BL{E Ik E
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gia 243 7 b VO S R0 2 0 P 1 S 45 4

Wide-angle seismic reflection profiles and crustal velocity structure of the South Georgia rift basin in the southeastern North

America (from Marzen et al., 2020). (a) Locations of wide-angle seismic reflection profiles across the South Georgia rift
basin; (b) Location of the South Georgia rift basin in the CAMP; (c-d) Crustal velocity structure in the West Georgia and East

Georgia

W KB I X a1, R S EMIE N E
1227 1600 km, {67} EEEE 1000 m, H#13& 46 Tt
B ENT 3 H AR, SHgA: EF SRS
F #& f ( Campbell, 2007; Griffiths and Campbell,
1990 —5, MUkJE L LIP fIHbmS ke R 24t 74
JIUEHE. B2, FEENFEAET LIP 22 1 5 H b8 ik A ¢
LR R, 1230 X 3% IR Bl ) b
BETT (Sheth, 2007) . iX J& 77 Bk 58 SICHL N 2 i
B LIPs 22 1 AR B 0@ A -5 A B LA e
RROOAE. BBAh, HIEREN 2R 2 B AR T i it
AR R, (HRIRZ LIPs 2 Kk
Hle, IR/ B A P (e R L M
AR HR A TR B 2R B0 B M (5 45 1 — B 0T 7T
(Koptev et al., 2021) .

42 RKAKEEENERSIERFIFE TR
LIPs X e BRSARAIABTAZAL M A DL 1 ek

AL AR TP R EAH AR, s U
[ i i) /L. LIPs 22 /0 5 A v DU IR A1) K 4 <4
FERFE] FE A (D) 87 LIP 5H%E4LK (~66 Ma)
MIEW K 4:; (2) CAMP 5 =84 kP 4258
A K4 (201 Ma): (3) PE{EF)IE LIP 5 =
BURMEY KL (~252 Ma); (4) UkJE 1L LIP
HZE4)NEESE MR AEY K4 (<260 Ma)

( Davies et al., 2017; Ernst and Youbi, 2017; Rei-
chow et al., 2009; Ruhl et al., 2020; Saunders, 2005;
Schoene et al., 2019; Sobolev et al., 2011; Xu et al.,
2010) . ]2 oA KRG X 50 2 LIPs Kl fE
M FEE ), iR B K& COo, 7] &
AR GRERASD, b2 s KA
B TR R IR & B A Co, &, 4
BRAR A EL UK )8 75 . H AT 32 B HD BT 1 5% 22 HE
IR et i 7 2 o g A I R TS LR i 4 Jo R4
KA ELGy, FFEEAL LIPs 5 P88 AR 40 R AR K 48 (1)
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FHOGHE. Black 55 (2013) 1 IRA#FH = 4E 23R M%3)
R T AR LIP BB i &, $2
[T IR T AR BR RSN R IE R R AR
EVRKAER IR B, BT aREAMFE. <
IRRETBCE 2R KL ¥E Bl R B [ 0 8] 5% 55 50 5 5 B0k
DAB €, KRRV 20 0o W 5 AR ) K A A 1A
RRABNAAAEFU, FFAZRE A LIP HFZEAEY
KR, WIFA R R — AW K AR A #8A Bi
LIPs % /& ( Fan et al., 2020; Mather and Schmidt,
2021; Self et al., 2014) .

W], KM IR X U 178 o5 AR EA
5E LIPs HUMREE RN, BN E /2 LIPs AR ) K
LR o ) A% e oA 22 /b B RIS IR BR TR
it it X B OB ORI H,0. CO,. SO,
M), HEMEREMFEES OUHEZERSE.
B TUED AR i S AE B RERE TBOR 2 UK,
I I A BR S AR 4L (Black et al., 2018; Cui et al,
2021; Ganino and Arndt, 2009; Liu et al., 2025; Retal-
lack and Jahren, 2008; Svensen et al., 2009, 2018) .
U4, 5 LIPs AH O B AE W) K 48 B ] e ik G 45 -
WA TR . AEESERA (B RO,
DL S 58 TR R W04 (Ernst et al., 2021; JE
BAEF,2024) X 5 AL F DR ILER HORAEY) 5 A%
FAFIEE T 5t R AR R ) G v o A 9
W2 FEIE AR AL B AR A B 51 B 22 AT REAN 2 ] 5 F i
JE. KA COy Wk FEAEI BT 7 18 58, /2
B 5 AR R IR E AR ARE N, B R
g I ) 3 S PSR R R AE D 2R R IA
iR 7 AR R R A T AES REGERR R )y, R
MR R R, HEINIRKRYA (RS
g, 20240 5 RERR IR 2 5CE P 5 RBON AT ST AR
EE, FRATXF LIPs R N B EE RN Fn e b i g
T R G [ S e A 45 R] A A T R AT L i
A R B VRS AL DTBR . BT LIPs 5 4k
SAFARACFI ALK A A G R AR R L

e b AR AR R 0 o 9 JEL T LIPs 1A 08
ERGSEWKAFMEZ AR R R RBE |5
fith. DL S Ll LIP 9, AT AR NG 1 45 i I 1) Dy
257—260 Ma (Shellnutt et al., 2012), i fiz &K
LTI 45 KA AR 259.140.5 Ma (Zhong et al.,
2014) A1kl ZK [ 4E#Y 259.540.2 Ma ( Yang et al.,
2018) PR 5 T Uk JH th LIP f¥) 45 3 B A) . Yan 25
(2020) *fufE i 2 s MR L EET T
PIIRFIFERE 434, KIRAE 260—262.5 Ma KA T i

JERARIE 25 BT A . H T 9 T Ll s R R T8I K ==
RS (Flin: SO, CO,) 2{fiilg vt KAk,
BRI 6 0% J 1L LIP (1) 5 1 g I T K T R OE A T
~260 Ma JIVHE & 317 thE R B A ) K 4 A 123
WHIRJE 1 LIP 75355 K& 1 257.9—260.7 Ma i AH
Z R A KAE (Zhu et al., 2021), X — 5 WmE & B
BOSEEBACAR . A DA RS 8 =5
CRY 2255, 2018) . BhAb, IJE 1L LIP K 955
Kl (Xuetal, 2010). #EFILES Tu Le MSLE
(Shellnutt et al., 2020) A% T P gkt K s (Zhong
et al., 2014; Zhu et al., 2021) FISERF I IR)E 1L
LIP AR Kk L A FH R ] 5 T4 65325 12K i 2R 4
RAGAFEMMZ G REFIEHERSBEDAFHAES.
P BB ST AR LR 5 AR BAR A AN BT B ]
HE CRWRS, 2018) . [KHitk, HE LIPs &HiE
B RGAMA B THRE LIPs B HLE], 3B 7] b
NFF RIS AR S A 3RS AGERE & 13 ) S AR P it
HELR.

5 ZnwHRYE

LIPs 7 J383E RS0/ HR A 75 AImE H A 20 )
KB =4 %%, Ffm BN LAB #3h %, KFJ7
] _EAfE BT B LIPs 5 KRG 2R 1 25 56 Rk
WEA, UEHERE B KRR % R A R
WL, AR D e h @R, X S Ry 5K
JITE R it R A R 3 R BEVE FL. %) LIPs R #5247
N 1 3 A S 0@ AH AR FH ORI AR R S5, 2T
iU T S 1 B E LIPs BREk-EBE 8 1R N5 19y
A I AFAE 2 1. 0TI JE (o LIP. PG4 R LIP AN
CAMP [T LR B, A LIP 5 JKEE R G h
FLERHEE FTARE, FHUFEIRER 2 LA i
AT RE LT MM A T A KR AR

LIPs 7 3¢ 1818 R G2 E R g i F2 5 3R )2
IESAR AN AR ) 2 FE S AL 2 TR IR 2. LIPs Ak il
TERRFZ =) (R XA KER LS 2
H B0 A5 5 LIPs UL 1) R Z S A, W\ Rt 4k
SR KA SRR 2 —, {HJ& LIPs
FREMFEEE OUHREKRE. BE. T8
(17 J5 52 AR FH A 7E A BR A% AR A0 b 3 v B A
. Al 5 LIPs 12 N5 150 A S LA IR 858 3407
FEHLER R GURLAE 70 B AL RS A . BBk
P RS EOREFE T8 A BRI AN B 7 5
REF 454, AR EE LIPs & B E RS
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TR, MR NFEAR LIPs W fl e ah . Kol 24 fig
AIAERSAEARAL R, $E 78 LIPs JE Rk #2 A
Hiu 0 1) AP 1) B IZ AR A .

Bs

SO = A o AN I B R L, & Richard
Ernst {52 R BEE B 70 A .
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