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摘要：作为世界屋脊，青藏高原现今的地壳隆升状态是地球科学的一个重要关注点，对其地壳运动的观测与动力机制分

析是深入认识该问题的关键. 随着卫星大地测量的快速发展，以全球导航卫星系统（GNSS）和重力恢复与气候实验卫星

（GRACE）为主的观测技术在青藏高原地球动力学研究中表现出巨大优势和潜力. GNSS给出了精细的三维地壳变形结果，

GRACE提供了丰富的时变重力数据，前人已有效结合这两种资料对青藏高原地壳运动与固体物质迁移问题进行了充分研究，

较系统地评估了高原地壳隆升现状. 因此，本文将综述当前联合 GNSS与 GRACE数据进行高原地壳隆升研究的科学进展，

涉及到高原地壳位移场与时变重力场观测、负荷变形估算与构造变形提取、地壳厚度与 Moho面深度变化反演等研究成果，

本文还简单讨论分析青藏高原当前地壳隆升的环境背景与动力机制.
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Abstract: As the "Roof of the world", the current state of crustal uplift on the Qinghai-Xizang Plateau is a sig-
nificant focus in Earth sciences due to its complex geodynamic environment and profound implications for region-
al and global climate, hydrology, and seismic activity. Understanding the mechanisms behind its uplift involves ob-
serving crustal  movements  and analyzing their  dynamic  processes  in  great  detail.  With  the  rapid  development  of
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satellite  geodesy,  observation  technologies  centered  on  the  Global  Navigation  Satellite  System  (GNSS)  and  the
Gravity  Recovery  and  Climate  Experiment  (GRACE)  have  demonstrated  remarkable  advantages  and  potential  in
the geodynamic studies of the Qinghai-Xizang Plateau. GNSS provides highly detailed three-dimensional measure-
ments of crustal deformation, enabling precise tracking of horizontal and vertical movements. Meanwhile, GRACE
offers comprehensive time-varying gravity data,  which is crucial for understanding mass redistribution within the
Earth's crust and mantle. Previous research has effectively combined these two datasets to study the intricate pro-
cesses of crustal movements and solid mass migration on the Qinghai-Xizang Plateau. This integrated approach has
yielded quantitative results of vertical crustal movement, allowing for a systematic evaluation of the current state of
uplift.  The combination of GNSS and GRACE data has enabled researchers to delve deeper into the mechanisms
driving the uplift, providing insights into the interaction between tectonic forces and surface processes. Therefore,
this paper aims to review the scientific progress made in studying plateau crustal uplift  by integrating GNSS and
GRACE data. It  will  cover various aspects such as the observation of the plateau's crustal displacement field and
time-varying gravity field, the estimation of load deformation and the extraction of tectonic deformation, and the in-
version of changes in crustal thickness and the depth of the Moho interface. These research findings offer a compre-
hensive understanding of the geodynamic processes. Furthermore, the paper will briefly discuss the environmental
background and dynamic mechanisms underlying the current crustal uplift of the Qinghai-Xizang Plateau.

Keywords: Qinghai-Xizang Plateau; crustal uplift; GNSS; GRACE; load deformation

 

0    引　言

青藏高原是受印度—欧亚板块相互碰撞挤压作

用的核心区域（ Molnar and Tapponnier, 1975; Tap-

ponnier et al., 2001），其地壳隆升历史可追溯到几

十个百万年前（李吉均等, 1979; Yin and Harrison,

2003; 钟大赉和丁林, 1996），涉及到的历史高程推

演、初始隆升时间、各期次隆升速率确定等问题是
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地质学、地球化学、古生物学等学科的重大话题

（Ding et al., 2022; Herman et al., 2010; Rowley and
Currie, 2006; 许志琴等, 1999）. 丰富的研究已经回

溯出了青藏高原隆升的粗略历史轮廓，但要对高原

生长过程进行详细描述仍十分困难.
相反，得益于现代大地测量技术的快速发展，

在认识青藏高原现今的地壳隆升问题中，已经有了

很好的观测条件与研究基础（党亚民等，2023；刘

经南等，2000；王琪等，1996）. 最早的青藏高原

隆升研究始于 19世纪 50年代后的水准测量，水准

结果（Jackson and Bilham, 1994; Ying et  al.,  1988）
显示青藏高原整体处于隆升的状态，最大的隆升发

生在喜马拉雅区域，不同区域隆升速率存在较大差

异. 最近，中国地震局第一监测中心收集整理的青

藏高原 11.6万千米的精密水准资料，研究结果显

示测网中大部分测点呈现为垂直隆升特征，高原南

缘和东北缘两个构造区表现明显的隆升，喜马拉雅

东构造节邻近地区有显著下沉（Wu et al., 2022）.
水准观测对人们认识青藏高原地壳隆升具有重要意

义，然而其外业工作艰苦、受限因素多，实现对青

藏高原大范围与持续性观测是困难的.
卫星大地测量技术则因时空覆盖率高、观测成

本低、精度高等优势，在青藏高原地壳运动观测及

其动力学研究中发挥重要作用. 一方面，全球导航

卫星系统（Global Navigation Satellite System, GNSS）、
合成孔径雷达干涉测量技术（InSAR）等可以从几

何形变角度来量化地壳运动状态 . 具体而言，

GNSS可以实现测站三维毫米级精确定位，能够实

现不同时空尺度的地壳变形连续监测. InSAR技术

可以获取大范围、高时空分辨率的雷达视线方向

地表形变场，通过升降轨或融合多成像技术能重构

出三维形变信息 . 另一方面，重力恢复与气候实

验卫星（Gravity Recovery and Climate Experiment,
GRACE）、小卫星挑战计划（Challenging  mini-
Satellite Payload, CHAMP）等从重力场变化角度对

地壳垂向运动反演进行了有效约束. 因为内部固体

物质密度差异，地壳垂向运动和壳幔物质调整均会

引起区域重力场的变化，从而被重力卫星捕捉到

（孙文科，2002；许厚泽等，2005），基于卫星重

力资料可以实现区域地壳变形量的估算（Fu and
Freymueller, 2012; van Dam et al., 2007）. 因而，卫

星大地测量技术成为青藏高原动力学研究的有效手

段，其中联合 GNSS与 GRACE的青藏高原地壳隆

升研究已取得重要成果. 

1    青藏高原地壳隆升环境

青藏高原有着复杂的构造环境（图 1a），在

板块碰撞动力下高原地壳仍在不断增厚和隆升，也

进行着侧向伸展与物质逃逸，形成了一系列各向伸

展的大型活动断层和造山带（邓起东等，2002；王

琪，2003；张培震等，2002）. 高原及其周边区域

地震、滑坡、火山等灾害频繁，使其成为全球受自

然灾害影响最为严重的内陆区域之一，这些自然灾

害一定程度上影响并改变着高原的高程（崔鹏等，

2017）. 另外，青藏高原深层物质的密度差异、熔

融与流变特征已被地震、大地电磁、地质学等学科

研究结果所验证，表明了高原内部物质的运动迁移

与调整状态. 除地壳的刚性运动外，区域深层地壳

物质可能以通道流形式进行着各向运动，印度板块

的俯冲与物质补充使得青藏高原地壳增厚，地幔对

流、岩石圈拆沉过程进一步调整壳幔物质（Bao et
al., 2020; 陈凌等, 2022; Chen et al., 2017; Royden et
al., 2008; 许志琴等, 2004; Yang et al., 2012）. 这些

深层动力作用影响着青藏高原地壳的垂向运动，所

以青藏高原的地壳隆升体现着其对地球深部机制的

浅层响应.
同时，青藏高原还有着独特的水文与气候环境

（图 1b），是多种季风气候交汇区，是除南北极

外世界上冰川分布最广的区域，拥有着众多湖泊、

河流，蕴藏着丰富的淡水资源，供养着数十亿人口，

因而被称为“亚洲水塔”和“第三极”（Ma et al.,
2010; Zhang et al., 2019）. 我国第二次青藏高原综

合科考发现，全球变暖背景下青藏高原的升温更为

强烈，过去 50年青藏高原冰川发生明显的面积萎

缩与厚度减薄，而湖泊面积增加了近一万平方公里，

河流径流量变化明显（Duan and Wu, 2005; 姚檀栋,
2019; Yao et al., 2019; Zhou et al., 2009）. 在这些地

表水文质量源（冰川、湖泊、积雪、冻土等）的加

载和卸载作用下，具有黏弹性质的固体地球会产生

相应的负荷响应，区域水文和冰冻圈的负荷变形与

全球尺度冰川均衡调整、海洋/大气负荷潮、固体

潮等一起，直接体现在青藏高原的现今地壳隆升观

测中（Fu and Freymueller, 2012; Peltier et al., 2015;
Watson et al., 2006）. 同样的，受水文与气候调控

的剥蚀沉积也是改变青藏高原地壳厚度的重要因素

（Métivier et al., 1999; Westaway, 1995）. 所以，青

藏高原现今地壳隆升环境是十分复杂的. 研究青藏

高原现今的地壳隆升及其机制机理，有助于人们更
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好地认知多圈层耦合作用，乃至通过青藏高原来认

识地球系统. 

2      青藏高原的卫星观测：GNSS与

GRACE

GNSS因其高精度、高效率成为区域地壳变形

监测的主要手段. 青藏高原区域 GNSS观测是始于

1988年中德合作的滇西地震预报试验场大地测量

项目，随后国内外机构相继开展了区域相关观测

（Bendick et  al.,  2000; 刘经南等 ,  1998; 游新兆等 ,
2001; 朱文耀等, 1998）. 但中国大陆和青藏高原区

域 GNSS观测研究取得长足进步是在“中国地壳运

动观测网络（Crustal Movement  Observation   Net-
work  of  China,  CMONOC  I）” 和 “ 中 国 大 陆

构造环境监测网络（CMONOC II）”获批与实施

后. 它们使得青藏高原及其周边区域台站资料得到

了极大丰富，此外在区域或国际项目的补充下，至

今已有 30余年的观测资料积累，成为深入研究青

藏高原及其周边地区构造形成与演化的重要基础

（甘卫军，2021；王敏和沈正康，2020；张培震等，

2022）. 图 2a为现今青藏高原及其周边区域 GNSS
资料的台站信息（Liang et al., 2013; Pan et al., 2018;
Wang and Shen, 2020; Zhao et al., 2023） . 在 GNSS
变形监测中，原始时间序列除构造变形信息外，还

含有模型残差、解算误差、地表负荷变化、地震活

动等引起的非构造变形. 因而通过数学物理模型改

正、成分分离等信号处理方法去除相关因素干扰，

是基于 GNSS开展青藏高原动力学研究的重要前期

工作（Boehm et al.,  2006; Dong et al.,  2002; Trego-
ning and Watson, 2009; 王敏等 ,  2005; Watson et al.,
2006），对应的处理方法在姜卫平等（2018）  研
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图 1      青藏高原构造与水文气候环境. （a）青藏高原断层与地震活动分布，断层数据来源于 Styron等（2010），地震数据

收集至 1980年至今全球 CMT数据集 （www.globalcmt.org），蓝色虚线为主要缝合带分布，虚线箭头表示板块碰撞

动力方向；（b）青藏高原季风、冰川、湖泊、流域分布（引自 Rao and Sun, 2021）
Fig. 1    Tectonic and hydroclimate environment of the Qinghai-Xizang Plateau. (a) Distribution of faults and seismic activity on the

Qinghai-Xizang Plateau. Fault data from Styron et al. (2010), seismic data collected from the Global Centroid Moment Tensor
(CMT) dataset from 1980 to present (www.globalcmt.org). Blue dashed lines represent the distribution of major suture zones,
with dashed arrows indicating the direction of plate collision dynamics. (b) Distribution of monsoons, glaciers, lakes, and river
basins on the Qinghai-Xizang Plateau (from Rao and Sun, 2021)
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图 2      GNSS与 GRACE卫星观测基础. （a）青藏高原及其周边区域台站分布，背景为青藏高原断层分布 （引自 Wang and
Shen, 2020）；（b） 全球月重力场解模型（数据来源于 CSR mascon）

Fig. 2    GNSS and GRACE satellite  observations  foundation.  (a)  Distribution of  stations  in  the  Qinghai-Xizang Plateau and its  sur-
rounding areas, with the background showing the distribution of faults in the Qinghai-Xizang Plateau (from Wang and Shen,
2020); (b) Global monthly gravity field model (data sourced from CSR mascon)
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究中得到了系统梳理.
与 GNSS这种直接的地壳变形观测技术相媲

美的是重力卫星观测技术. 分别于 2002年 3月与

2018年 5月发射的重力卫星 GRACE与继任卫星

GRACE Follow-On通过重力场变化观测可以直接

研究区域物质迁移状态，通过扣除地表层水圈和冰

冻圈的重力信号后，得到反映内部构造变形信号，

实现对内部动力过程的重力学约束（ Fu and Frey-
mueller, 2012; Jiao et al., 2019; Kusche and Schrama,
2005; van Dam et al.,  2007; Yi et al.,  2014） . 至今，

GRACE及 GRACE-FO已发布 228个月份的全球重

力场模型（图 2b），其时变重力场模型反映的总

物质迁移结果，充分弥补了陆地水模型的不足与观

测资料的稀缺（Tapley et al., 2019），除了被广泛

应用于全球和青藏高原区域的冰冻圈、水圈、环境

气候相关研究外（Amin et al., 2020; Chambers et al.,
2004; 常乐和孙文科, 2021; Chen et al., 2022; Feng et
al., 2013; Yi et al., 2016; Zhan et al., 2017; 张岚和孙

文科, 2022），在地球固体圈层研究中也发挥着重

要作用，如地震、冰川均衡调整（GIA）、地球流

变性问题等（Han  et  al.,  2016;  Panet  et  al.,  2018;
Peltier et al., 2015; Tesmer et al., 2011）. 对于青藏高

原区域，GRACE观测的重力场背后信号源是更为

复杂的，因此，基于 GRACE重力数据开展青藏高

原地壳变形研究也同样有着大量的前期工作需要完

成，包括低阶项系数替换、重力信号滤波处理、信

号泄露恢复、非构造信号去除等. 已有研究对这些

前期工作有效的处理策略进行了详细介绍（Lan-
derer  and  Swenson,  2012;  Swenson  and  Wahr,  2006;
汪秋昱等, 2022）. 

3    青藏高原地壳隆升研究进展

基于 GNSS与 GRACE的联合研究，从独特视

角回答了青藏高原的地壳隆升动力学问题，包括现

今青藏高原整体的隆升速率是多少？地壳是否处于

增厚状态？内部界面深度如何调整？负荷变形与构

造变形对地壳隆升的贡献如何区分？当前青藏高原

地壳隆升机制是什么？因而综述前人这些成果将更

有益于人们全面和深入地认知青藏高原地壳隆升. 

3.1    地壳隆升的观测结果

青藏高原地壳隆升的 GNSS研究是从区域变形

观测开始的. 例如，Xu等（2000）基于青藏高原南

部 14个移动 GNSS台站 1993年、1995年、1997
年的观测资料首次尝试并初步给出了区域平均隆升

速率为 16.2±7.9 mm/a，但这一结果受限于站点数

目与观测时间长度等因素，与后来众多结果不相

符. 随后，刘经南等（2000）给出的西藏块体隆升

速率大约为 3.6±4.0 mm/a；姜卫平等（2008）利用

1993至 2002年间 5期观测资料获得了 15个台站

的垂向变形结果，显示平均的台站隆升速率为

3～5 mm/a，但同样受限于观测时间的连续性等因

素，不同期速率结果间存在一定差异. 随着 GNSS
观测周期的加长，一些研究采用单个或多个台站长

期监测资料研究青藏高原的地壳隆升问题，如 Sun
等（2009）基于拉萨、大理、昆明三个台站获得

1.2±0.5 mm/a的青藏高原地壳隆升速率；邢乐林等

（2017）基于 5个基准站观测资料估算的青藏高原

隆升速率为 1.94±0.17 mm/a. 随着观测时间的进一

步延长，区域变形研究得到进一步丰富，Fu和
Freymueller（2012）对尼泊尔喜马拉雅区域的长期

GNSS垂直变形研究显示该区域的隆升有着强烈的

季节性与趋势性特征，台站的平均季节性隆升变化

达到 5～6 cm，GNSS台站区域的最大隆升速率为

6.07 mm/a，喜马拉雅高山区整体处于显著的隆升

状态；Hao等（2016）针对高原东南区域的垂直

GNSS变形研究表明该区域大部分位置处于隆升状

态，但川滇南部表现为下降趋势（1～2 mm/a）；
Saji等（2020）对喜马拉雅与北印度的地壳变形研

究显示喜马拉雅前沿有着明显的沉降. 此外，地壳

整体隆升速率还可以通过建立直立方体模型，通过

地壳垂直运动与重力变化关系模型反演得到，例如，

段虎荣等（2011, 2020）采用 GRACE数据反演出

沿喜马拉雅推覆构造带的区域平均隆升速率为

2.01±0.87 mm/a. 以上这些基于 GNSS与 GRACE的

观测研究均显示青藏高原区域地壳有着毫米量级的

垂向运动.
对于整个青藏高原，Liang等（2013）基于

750个台站资料首先完善地给出了地壳垂向运动结

果，喜马拉雅区域普遍表现出强烈的隆升，与喜马

拉雅山区南沿的差异达到 6 mm/a以上；青藏高原

东部区域垂直变形差异大，高原内、外围区域分别

为相对隆升与下降；青藏高原的中南部区域呈现出

明显的下降状态，平均速率在 0～−2 mm/a. 随后，

Pan等（2018）进一步利用 189个 GNSS连续台站

和 933个流动台站获取了青藏高原 1999—2016年
的三维地壳形变，其结果显示在横跨整个青藏高原
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的北北东走向上垂直变形速率由喜马拉雅区域的快

速隆升（1～5 mm/a）沿着主要断层逐渐减小；青

藏高原东北部一致的隆升速度约为 1.3 mm/a；青藏

高原东南部由北至南地壳垂向变形状态由隆升转换

为下降. 另外，天山及周边区域也有着明显的隆升

变形（1～3 mm/a），对应着青藏高原北向伸展运

动. 最近的更新结果有 Xiang等（2021）、Zhao等
（2023），使得青藏高原地壳垂向位移资料得到了

进一步丰富. 图 3a为综合前人研究结果的青藏高原

垂向变形速率场，具体到相同站点的隆升数值，不

同结果间存在部分差异，少数站点速率差值大于

3 mm/a（如图 3b），这与不同研究的时间跨度、

数据解算与误差处理方法等差异具有一定关系. 总
体上，这些研究揭示的青藏高原地壳隆升特征是一

致的，即现今的青藏高原仍“整体”处于隆升状态，

但空间差异显著.
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图 3     青藏高原及其周边垂向变形速率结果与不同研究间偏差. （a）综合结果（引自 Liang et al., 2013; Pan et al., 2018; Zhao
et al., 2023）；（b） 相同站点不同研究估算的速率的绝对差值，单位为 mm/a，空值表示缺少同一站点的结果比较

Fig. 3   Vertical  deformation  velocities  and  their  differences  in  the  Qinghai-Xizang  Plateau  and  its  surrounding  areas.  (a)  Integrated
results  (from Liang et  al.,  2013; Pan et  al.,  2018; Zhao et  al.,  2023);  (b)  Absolute differences in rates estimated by different
studies at the same sites, in units of mm/a. Blank values indicate a lack of comparisons for the same site's results

 

为了更好地呈现青藏高原地壳隆升空间特征，

一些研究通过对站点数据进行克里金插值、邻近点

加权平均、顾及空间结构的中值滤波等 GNSS成像

方法获取垂向变形的空间网格结果，以更好展示高

原整体和区域隆升状态（Pan  et  al.,  2018,  2021;
Xiang et al., 2021; Yi et al., 2016），如图 4. 插值得

到的青藏高原东南缘、中部及东北部区域的平均隆

升速率在 1～3 mm/a区间（Jiao et  al.,  2019; Yi  et
al.,  2016;  Zhang  et  al.,  2021），Rao和 Sun（2021）
通过成像给出的整个青藏高原平均地壳隆升速率

为 0.92±0.22 mm/a. 实际上，现有的 GNSS垂直变

形资料仍然是不足的，青藏高原中西部区域（羌塘、

可可西里等）缺少台站观测，而地质资料、构造活

动性、地震应力分析（孔屏和那春光, 2007; Lal et
al., 2004; Xu and Zhao, 2009） 表明这些区域的变形

活动是微弱的，地壳更趋于平稳或沉降，这与一些

插值成像得到的明显隆升结果有一定差异. 因而，

精确的青藏高原平均隆升速率还需通过更丰富的观

测资料来检验与计算得到. 特别是随着 InSAR数据

处理技术的成熟，通过融合 InSAR与 GNSS技术，
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图 4      青藏高原垂向变形成像结果. （a, b）分别引自 Xiang等（2021）及 Rao和 Sun（2021）
Fig. 4    GNSS imaging of vertical movement in the Qinghai-Xizang Plateau, and Fig. 4a and 4b are from Xiang et al. (2021) and Rao

and Sun (2021), respectively
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有望可以得到整个青藏高原区域的高空间分辨率形

变场信息，从而弥补 GNSS离散站点的观测不足问

题（刘传金等，2024）. 

3.2    青藏高原 Moho 面深度调整反演

当前许多研究依据地球物理观测资料精确估算

静态 Moho面深度与形态结构（Guy et  al.,  2017;
Shin et al., 2015; Teng et al., 2014），并产出了许多静态

的地球分层结构模型，类如 LITHO1.0、CRUST1.0
等（Laske et al., 2013; Pasyanos et al., 2014）. 相较

于传统地球物理方法，卫星大地测量的 GNSS与

GRACE的时变场观测数据应用，可以从动态变化

角度研究高原 Moho面深度的调整. Sun等（2009）
假设青藏高原是一个北侧固定的弹性块体，在印度

板块的冲撞下发生变形，壳幔物质运动，Moho面
深度发生调整. 由于地壳和地幔物质的密度差异，

区域重力场变化，所以通过将地表观测的重力变

化扣除水文因素和地表隆升固体部分重力贡献，

得到反映内部物质迁移重力变化结果为−0.78±
0.47 μGal/a，对应着 Moho面深度变化下壳幔物质

调整的重力影响，从而反演估算出青藏高原 Moho
面的下沉速度为 2.3±1.3 cm/a. 该研究提供了 Moho
面深度变化估算的思路，那么联合 GRACE与

GNSS的青藏高原 Moho面深度变化反演的原理与

实现可以用图 5流程图表示，主要为对 GRACE时

变重力信号进行成分分离（陆地各水文成分、沉积

剥蚀、地表变形）获取壳幔物质调整的重力变化影响

与构建地壳运动模型，解算Moho面深度变化速率.
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图 5     Moho面深度变化反演方法

Fig. 5   Methodology for inverting Moho depth changes
 

随后，Yi等（2016）在 Sun等（2009）基础

上使用 GRACE数据在青藏高原东缘开展了研究，

去除其它因素影响，构造运动重力变化结果为

0.34±0.08 μGal/a. 根据重力变化范围与 GNSS速率

不确定度，依据地壳流模型与对流移除模型这两种

适用的动力机制模型，模拟计算得到了中下层地壳

流动速度与上层地壳流动速度关系，以及Moho面
在深度方向的变化量，具体数值结果如图 6所示.
邢乐林等（2017） 联合绝对重力与 GRACE重力

反演得到青藏高原 Moho面下沉下速率为 2.35±
3.30 mm/a，另外，Jiao等（2019）利用 GRACE时

变重力数据和水文资料估算了高原西部、中部和东

部的三个区域Moho面深度变化的重力影响，西部

区域和东部区域的 Moho面分别以 18.1±7.2 mm/a
和 21.7±9.7 mm/a的速率上升，而中部区域 Moho
面以 18.3±8.6 mm/a的速率下降. 同样，区域 Moho
面深度变化研究还有 Zhang等（2021），其获得的

青藏高原东北缘区域的 Moho面深度变化速率为

2.46±0.92 mm/a.  对于整个青藏高原，Rao和 Sun
（2021）基于 GRACE、GNSS数据、卫星测高资

料、沉积剥蚀资料等对青藏高原各水文与构造因素

的重力影响进行了有效分离，最终得到了整个青藏

高原区域的Moho面深度变化空间分布，如图 7. 其
结果显示以金沙缝合带划分的青藏高原南北部

Moho面深度变化存在较大差异，青藏高原北部

Moho面处于明显的上升状态，南部 Moho面在下

沉，该空间分布与地震层析成像揭示的南北物质特

性差异空间分布特征相符（Chen et al., 2017）.
以上基于 GRACE与 GNSS的 Moho面深度变

化反演的数值结果都伴随着较大不确定度，这主要

是由 GRACE观测量中提取构造运动重力变化涉及

到的多源信号分离、模型数据的可靠性与误差积累

以及反演问题的多解性等决定的，但体现了卫星大

地测量技术在青藏高原动力学研究中的潜力与新颖
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性. 同时，我们从卫星观测的视角获取的青藏高原

构造运动方面的新认识，有望同基于地震学、大地

电磁等地球物理方法和地质学等的成果提供的相关

结果进行相互印证. 

3.3    青藏高原地壳厚度调整

拥有巨厚地壳的青藏高原，GNSS水平位移速

度矢量由南向北具有线性变小特征，反映了印度板

块楔入欧亚大陆造成的地壳缩短增厚，相关结论与

认识被广泛接受（Gan  et  al.,  2007; Wang  et  al.,
2001; Zhang et al., 2004）. 青藏高原地壳厚度是由

地表与Moho面共同界定的，在上两节内容中，基

于 GNSS与 GRACE的观测研究得到了青藏高原地

表隆升与 Moho面深度变化的定量结果. 因而，综

合以上研究结果，青藏高原的地壳厚度调整状态将

能够被有效确定.
Sun等（2009） 由三个GNSS台站观测与重力观

测反演给出的青藏高原的地壳增厚速率为 24.2 mm/a.
刘杰等（2015）给出青藏高原南北部区域地壳增厚

速率分别为 2.5 cm/a和 0.2 cm/a. 邢乐林等（2011,
2017）反演得到了拉萨、阿拉善和祁连地块的地壳

增厚结果，分别给出的拉萨站点地壳增厚速率为

40.4±3.30  mm/a、青藏高原地壳平均增厚速率为

4.29±3.30 mm/a. 以上基于站点观测资料的研究大多

表明了青藏高原地表有着小幅隆升，但地壳的增厚

幅度较大，Moho面有着明显的沉降趋势. 这些研究

均是依据极少数台站观测资料，且站点多位于青藏

高原南部、东部区域（拉萨、昆明、大理、西宁），

因而不能够充分代表高原整体地壳厚度的调整状

态. 随后，Yi等（2016） 基于更丰富的 GRACE与

GNSS空间观测资料开展了青藏高原东南缘动力学

研究，获取的地壳厚度调整区间为 0.07～9.25 mm/a，
揭示了区域的地壳增厚状态；Jiao等（2019）给出

的青藏高原内部三个区域的地壳增厚速率分别为

−16.9±7.2 mm/a、19.4±8.6 mm/a、−21.2±9.7 mm/a，
表明了高原内部不同区域的地壳增厚状态的差异；

Rao和 Sun（2021, 2022）对整个青藏高原地壳厚
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图 6      青藏高原东缘的两种可能模型的示意图. 在深部地壳流模型中（a），需要一个很强的中下地壳流来导致地壳增厚和地

表隆升. 在深部地壳流和对流移除的混合模型中（b），地表隆升来自上升的 Moho面和温和的中下地壳流（引自 Yi
et al., 2016）. WC：汶川地震；LS：芦山地震

Fig. 6    Schematic diagram of two plausible models beneath the eastern Qinghai-Xizang Plateau. In the (a) deep crustal flow model,
there is considerable flow of the middle-lower crust causing crustal thickening and surface uplift. In the (b) hybrid model of
deep crustal flow and convective lithospheric detachment, the surface uplift is results from the uprising Moho and moderate
middle-lower crust. The values are constrained by the space gravity and surface GPS observations, as well as a restriction of
the Moho moving direction (from Yi et al., 2016)
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图 7     青藏高原 Moho面深度变化反演结果. 黑色虚线表示

划分的青藏高原南北分界线（引自 Rao and Sun, 2021）
Fig. 7   Results of Moho depth changes inversion in the Qinghai-

Xizang  Plateau.  The  black  dashed  line  represents  the
delineated boundary between the northern and southern
Qinghai-Xizang Plateau (from Rao and Sun, 2021)
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度反演给出的减薄速率为 3.28±5.13 mm/a，其空间

分布特征为青藏高原南北分别表现为普遍的地壳增

厚与减薄，最明显的区域地壳增厚与减薄均能达每

年数十毫米；Zhang等（2021）对青藏高原东北缘

的构造研究给出的该区域平均地壳减薄速率为

0.56±0.94 mm/a. 这些研究结果揭示了青藏高原地壳

厚度调整状态的空间差异性与调整强度的多可能性，

例如区域的地壳增厚、显著增厚、地壳减薄、显著

减薄等. 表 1总结了前人研究给出的青藏高原地壳

厚度变化结果与地壳厚度调整状态相关结论，具体

数值代表不同研究给出的区域地壳隆升、增厚和

Moho面深度变化的期望值. 需要指出的是，在当前

卫星或地表观测条件下，地表隆升不确定度要整体

低于其估算值，因而不同研究给出的地表隆升状态

的结论有着较高的可信度. 然而，Moho面深度变化

和地壳厚度调整结果有着很大的不确定度（厘米量

级），甚至不确定度超过期望值，一定程度上相关

结果或结论的准确性是受到很大限制的，虽表明了

青藏高原动力学解释的复杂性与多可能性，但值得

后续研究的进一步验证.
 
 

表 1    青藏高原地壳厚度变化估算结果. 单位：mm/a
Table 1    Crustal thickness change of the Qinghai-Xizang Plateau. Unit: mm/a

 

地壳增厚速率 地表、Moho面深度调整 研究结果来源 解释

2.0～40.4 1.2～4.0、−39～0 刘杰等, 2015; Sun et al., 2009; 邢乐林等, 2011, 2017 站点区域地壳有着较大的增厚趋势

0.1～9.3 2.7、 −6.6～2.6 Yi et al., 2016 地表隆升与区域地壳增厚幅值较小

−0.6 1.9、2.5 Zhang et al., 2021
青藏高原东北缘地表隆升较为微弱，地壳

厚度有明显减薄

−3.3 0.9、4.2 Rao and Sun, 2021, 2022
地表隆升较微弱，青藏高原南北区域地壳

分别有着显著增厚与减薄

−21.2～19.4 0.4～0.9、−21.7～18.3 Jiao et al., 2019
地表隆升较微弱，区域地壳厚度存在相反

的调整状态，增厚与减薄幅度大

 

另一方面，青藏高原地壳厚度调整状态的空间

差异性与多可能性可以通过地壳物质平衡与地球物

理、地球化学研究结果来验证分析 .  Westaway等
（1995） 估算了印度板块碰撞挤压对青藏高原物

质补充量约为 1.9 km3 /a，若这部分物质完全作用

于地壳增厚隆升，则对应着 0.6 mm/a的青藏高原

地壳增厚速率，而这一数值要小于当前地表隆升观

测结果. 因而，青藏高原地壳隆升还可能受到岩石

圈或更深层的抬升作用，而地幔对流、岩石圈拆沉

等这些深层动力过程更易使区域发生地壳减薄，

Moho面显著抬升. 另外，整个印度—欧亚板块运动

并不完全符合“整体刚性运动”特征（Gan et al.,
2007;  Meade  and  Hager,  2001;  Shen  et  al.,  2005）；
地球物理、地球化学研究揭示了青藏高原深层物质

具有流变性与塑性特征（Bai et al., 2010; Zhao et al.,
2008），表明印度板块地壳无法轻易实现整个地壳

的俯冲下插. 岩石圈深部物质结构与热状态、均衡

调整作用都会影响到青藏高原的隆升与地壳厚度调

整（单斌等，2008）. 因而，这些观点在一定程度

上支撑着基于 GNSS与 GRACE研究获取的青藏高

原地壳厚度调整结果与结论的可靠性. 

3.4    地壳隆升因素：负荷变形、构造变形及其它

因素

GNSS与 GRACE观测揭示了青藏高原的地壳

隆升，但背后隆升因素是复杂的，除了板块碰撞下

的构造运动外，还包括气候环境影响的地表负荷变

形、区域地震活动、全球尺度的冰川均衡调整等.
区分这些因素对高原地壳隆升的贡献，是人们加深

认知高原复杂动力系统的关键. 

3.4.1    青藏高原负荷变形

在地表各质量源（冰川、湖泊、沉积物等）的

加载和卸载作用下，固体地球产生的不同时空尺度

变形现象被称为负荷变形 . 青藏高原由于其显著

的水储量趋势性（图 8a）和季节性变化年幅值

（图 8b），其伴随的负荷变形被广泛关注（Argus
et  al.,  2020;  Fu  and  Freymueller,  2012;  Hao  et  al.,
2016; Khan  et  al.,  2010; 唐河和孙文科 ,  2021;  van
Dam et al., 2007; White et al., 2022）. 在计算实际地

表负荷变形中，学者们（Farrell, 1972; Gilbert et al.,
1968; Longman, 1962, 1963; Tang and Sun, 2019）给

出了基于数值积分求解分层弹性地球负荷变形
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Green函数的不同方法，基于这些方法获取的

Green函数可以用于计算任意质量分布下的全球任

意区域的负荷变形，其中，Farrell（1972）的负荷

理论最具代表性 . 另外，一些学者（Guo  et  al.,
2004; Mitrovica et al., 1994）提出了从球谐谱域利

用 Love数直接计算球面负荷变形的方法 . 随着

GRACE球谐系数产品的发布该方法成为当前的主

流计算方法（ Ferreira  et  al.,  2020;  Fu and   Frey-
mueler, 2012; Pan et al., 2018; Saji et al., 2020）.
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图 8     青藏高原水储量变化及垂向负荷变形影响. （a, b）分别为以等效水柱高表示的陆地水储量变化的长期趋势、季节性年

幅值；（c, d）表示垂向负荷变形的趋势和年幅值

Fig. 8   Changes in water storage and vertical load deformation in the Qinghai-Xizang Plateau. (a, b) Show the long-term trends and
seasonal annual amplitudes of changes in land water storage represented by equivalent water height, respectively. (c, d) Repre-
sent the trends and annual amplitudes of vertical load deformation

 

基于 Green函数卷积计算地表垂向负荷变形与

利用 GRACE球谐系数及负荷 Love数的负荷变形

谱域计算，分别可以通过公式（1）和（2）来实现：

UGF (θ,ϕ) =
x
∆m(θ′,ϕ′)GR (Ψ )cosθ′dθ′dϕ′ (1)
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其中， 和 为观测点的纬度、经度，公式（1）中

是使用格林函数方法计算的观测点垂直负荷变

形， 是负荷源（ 与观测点（ 之间的球

面角距， 表示负荷质量分布， 是垂直位移

负荷格林函数；公式（2）， 代表球谐计算得

到的垂直负荷变形结果， 是地球平均半径， 是

完全正则化的勒让德多项式， 和 是 阶的负荷

Love数（Farrell,  1972）， 和 为全球时变

重力场中大地水准面球谐系数. 基于 GRACE CSR

球谐系数计算的垂向负荷变形趋势和季节性幅值分

布如图 8c和 8d，显示了青藏高原显著的趋势性与

季节性负荷变形影响.
Fu和 Freymueller（2012）基于 GRACE数据

估算了青藏高原尼泊尔区域的垂直负荷变形结果，

并与 GNSS观测资料进行比较分析，发现两者在季

节性幅值与相位上有很好的一致性. 同样，青藏高

原东南区域 GNSS垂直位移也体现了强烈的季节性

水文负荷特征（Hao et al., 2016）. 对于整个青藏高

原区域，Pan等（2018）利用十几年的 GRACE数

据估算了青藏高原区域垂直负荷变形的长期趋势，

并对 GNSS垂直变形速率进行负荷改正. 图 9a为估

算的负荷变形趋势与 GNSS垂直速率的百分比值.
相比于将 GRACE观测量直接作为负荷质量结果估

算负荷变形，Zhao等（2023）采用来自于 NASA、
GFZ等机构发布的陆地水储量负荷、非潮汐海洋负

荷、非潮汐大气压力负荷模型产品构建了区域地表
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负荷场，由此计算的垂向负荷变形速率与 GNSS站

点隆升速率比值关系如图 9b. 两种结果均表明，负

荷效应对地壳变形有重大影响，因而在区域构造变

形研究中需有效去除负荷效应的影响.
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图 9     青藏高原垂直负荷变形趋势对 GNSS站点地表隆升速率的影响. （a, b）分别为基于 Pan等 （2018）和 Zhao等 （2023）
的研究结果

Fig. 9   The contribution of vertical load deformation in the Qinghai-Xizang Plateau to surface uplift at GNSS stations. (a, b) Repre-
sent the research results based on Pan et al. (2018) and Zhao et al. (2023), respectively

 

对于利用 GRACE球谐系数的谱域负荷变形计

算方法，需要指出的是，GRACE观测的质量恢复

体现的是中长波长的重力异常信息，而 GNSS观测

包含了更高频的局部信息，两者的频谱差异性以

及 GRACE综合重力场包含非负荷质量源信息，因

而决定了基于 GRACE估算的负荷变形速率是存在

不准确性的（Rao and Sun, 2022）. 而对于一些负荷

模型产品更关注于全球尺度季节性负荷效应，更精

细的局部负荷信息并不完整，区域长期趋势性影响

没有体现. 为了获得更精细有效的青藏高原负荷变

形趋势性结果，Rao和 Sun（2022）基于高精度的

全球和青藏高原区域水文观测资料、模型及前人研

究成果构建的水文质量变化模型用以更好地代表真

实负荷质量源. 由于基于 Love数的谱域计算方法存

在频谱截断的限制，利用格林函数卷积计算方法重

新估算了青藏高原区域垂直负荷变形趋势，其结果

显示 GRACE获取的垂直负荷位移趋势在单站点能

产生的最大偏差近 1 mm/a. 另外，其结果得到青藏

高原负荷变形的平均影响为 0.15±0.12 mm/a，对基

于 GNSS观测值估算的青藏高原平均隆升速率的贡

献量为 16%. 以上研究表明负荷变形除了是导致青

藏高原发生长期隆升变形的一个主要因素，还决定

了青藏高原地表季节性隆升与沉降运动. 负荷变形

的准确模拟与计算是基于 GNSS观测资料获取区域

构造变形信息的重要前提与保证. 然而，当前流行

的基于 GRACE数据的球谐谱域负荷变形估算方法，

其估算结果的准确性是存在较大问题的，更高精度、

可靠的负荷质量源模拟与格林函数积分方法更适用

于GNSS站点的负荷变形计算（Rao and Sun, 2022）. 

3.4.2    冰川均衡调整

冰川均衡调整是黏弹地球对末次冰期地表冰与

海水负荷改变的动力学响应，包括地壳变形、重力

场变化、地球旋转运动等（汪汉胜等，2009）. 许
多学者基于长期大地测量观测资料、冰川历史记录

和地球模型对冰川均衡调整的响应过程进行了模拟，

提出了适用于全球或区域的冰川均衡调整模型

（Geruo et al., 2013; Paulson et al., 2007; Peltier et al.,
2015; Roy and Peltier, 2017）. 冰川均衡调整对极地

区域地壳垂向变形的影响较大，能达到每年十几毫

米. 在青藏高原区域，基于不同冰川均衡调整模型

的估算结果变形结果较一致，对高原隆升的影响约

为 0.34 mm/a. 此外，一些研究根据青藏高原冰川遗

迹与周边冰碛物分布推断青藏高原在更新世晚期存

在统一的大冰盖，但该结论存在着较大争论，且可

以确定青藏高原即使存在统一大冰盖，该区域的冰

后回弹也不会是青藏高原隆升的最主要机制（Der-
byshire et al., 1991; Kuhle, 1998; 汪汉胜等, 1997）. 

3.4.3    构造变形

印度欧亚板块碰撞被认为是青藏高原地壳隆升

的重要构造动力来源，Westaway（1995）对现今

青藏高原地壳物质平衡进行了估算研究，认为印度

板块的碰撞对青藏高原物质补充量约 4.4 km3/a，其

中部分物质从喜马拉雅被剥蚀掉、部分地壳物质作

用于青藏高原的伸展扩张、物质逃逸及被高原北部

区域地壳运动吸收，剩余约 43%的地壳物质是贡

献了青藏高原的地壳增厚与隆升（图 10a）.
若根据 Pan等（2018）、Wang和 Shen（2020）
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等更新的 GNSS水平位移场结果，得到的印度

板块北向俯冲速率要低于 Westaway（1995）的

50 mm/a预估量，考虑相同的印度欧亚板块碰撞范

围，可以得到印度地壳碰撞的体积转换约为 3
km3 /a. 同样的，由于高原的伸展与物质逃逸，地壳

物质水平方向的“泄漏”也影响着青藏高原的地壳

体积平衡. 其中，青藏高原东南缘的地壳“逃逸”

速率约为 13.4 mm/a，我们假设的地壳物质运动通

道宽度为 560 km，该区域平均地壳厚度为 50 km，

那么青藏高原地壳物质由东南缘泄漏体积约为

0.38 km3/a. 另外，青藏高原东部受到四川盆地阻挡

作用，青藏高原地壳物质向东移速率近乎于 0. 青
藏高原东北部平均地表水平伸展速率约为 4.3 mm/a，
假设青藏高原东北缘的伸展区域由西祁连山至西秦

岭构造带，该区域平均地壳厚度约 50 km，伸展区

域长度为 1 100 km，那么该区域的地壳物质运动量

约为 0.24 km3/a. 青藏高原北部由阿尔金断裂带往西

至西昆仑断裂带至帕米尔高原整体向北移动速率约

为 15 mm/a，塔里木盆地对青藏高原地块移动的阻

挡作用并没有像四川盆地那样强烈，GNSS 变形结

果显示塔里木盆地区域存在一定的北向变形运动，

若将 GNSS 北向位移速率结果作为青藏高原北向伸

展的地壳运动速率，考虑运动区域长度为 1 200 km，

地壳平均厚度 48 km，则估算的体积通量为 0.86 km3/a.
由于青藏高原西部 GNSS 观测资料有限，现有资料

并未显示出青藏高原物质西向从帕米尔高原泄漏出

去，因此我们忽略掉青藏高原地壳物质西移“逃逸”

的影响 . 那么，最终估算的青藏高原地壳伸展与

“逃逸”造成的地壳物质流失总量为 1.48 km3/a，
那么剩余地壳体积变化总量约为 1.52 km3/a，对应

着 0.46 mm/a的青藏高原地壳增厚速率.
另一方面，从 GNSS垂向变形监测获得的青藏

高原平均隆升速率 0.92±0.22 mm/a中，扣除全球冰川

调整作用（0.34 mm/a）与水文负荷变形（0.15 mm/a）
的贡献，那么剩余的隆升速率为 0.43 mm/a则为构

造运动的贡献（Rao and Sun, 2021），图 10b展示

了青藏高原隆升的各影响因素贡献量. 这一构造隆

升结果似乎与上文推算的印度板块碰撞增厚于青藏

高原地壳的 0.46 mm/a相一致. 实际上，不同深度、

区域地壳刚性强度、密度结构等物性差异在说明着

青藏高原地壳运动存在的差异性与特殊性，可能高

原的上地壳以脆性变形为主，黏滞性的下地壳和上

地幔表现为流变特征（吕庆田等，1998；张培震等，

2002） . 因而，本文上述粗略的估算和前人关于

Moho面深度变化及地壳厚度反演都依赖着较简单

的地壳运动机制和模型，虽整体揭示了青藏高原构

造变形对青藏高原地壳隆升的重要影响，但仍不足

以精确量化青藏高原的构造隆升. 

3.4.4    其它因素

除构造变形、负荷变形与冰川均衡调整外，地

表的剥蚀与沉积、地震活动等都在影响着高原的地

形地貌，同样也可以被认为是地壳变形的影响因

素. 对于地震等自然灾害活动，它们的空间区域性

影响较强，大地震的同震和震后变形影响已经在一

些 GNSS观测研究中被有效去除. 另外，从大尺度

讨论整个青藏高原的地壳变形问题，我们也忽略掉

了小区域环境因素的影响.
由于青藏高原河流众多，季风环境复杂，青藏

高原区域的风化剥蚀与沉积现象显著. 剥蚀集中在

喜马拉雅山脉和青藏高原东南缘（Fielding, 1996），
约 0.4 km3/a的高原物质从喜马拉雅剥蚀掉并通过

河流搬运至印度洋、恒河和雅鲁藏布江流域的平均

剥蚀速率分别为 0.4 mm/a和 0.1 mm/a（Westaway,
1995） . 东南青藏高原和云南区域地表剥蚀面积

 

现今地壳体积通量平衡
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图 10      青藏高原地壳物质平衡（a）与地壳隆升各要素的贡献量（b）（引自 Rao and Sun, 2021; Westaway, 1995）
Fig. 10    Crustal flux balance (a) and contribution of various factors to crustal uplift of the Qinghai-Xizang Plateau (b) (from Rao and

Sun, 2021; Westaway, 1995)
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达到 106 km2，其中黄河、长江、湄公河流域的

地壳物质剥蚀沉积量为 0.40  km3/a、0.18  km3/a、
0.05  km3/a，怒江和伊洛瓦底江流域剥蚀量为

0.10 km3/a，这些剥蚀沉积量对应着青藏高原东部

和东南区域平均剥蚀速率约为 0.8 mm/a. 另外，青

藏高原及其周边的盆地区域同样有着明显的沉积作

用，最近的地质时期记录显示塔里木盆地西南部的

最大沉积速率达到 0.43 mm/a，而塔里木盆地北部

的最大沉积速率为 0.27  mm/a （Métivier  et  al.,
1999） . 喜马拉雅前陆盆地的最大沉积速率为

0.5 mm/a （Westaway, 1995），柴达木盆地作为高

原内部盆地，其物质沉积速率约为 0.41  mm/a
（Métivier et al., 1998）. 此外，岩石裂变径迹记录、

宇宙成因核素测年技术、河流沉积记录等对青藏高

原的剥蚀沉积研究（Clark et al., 2010; Duvall et al.,
2012; Gabet et al.,  2008; Garzanti et al.,  2007; Henck
et al., 2011），均揭示了青藏高原的显著的剥蚀沉

积. 总体上，青藏高原的剥蚀物质流失主要发生在

外流流域与高山区，无论是在地质历史气候还是当

前气候环境下，青藏高原区域的剥蚀沉积作用主要

是在削减与调整青藏高原的高程地貌.
在 3.4节中本文综述了当前对青藏高原地壳隆

升因素的研究进展. 负荷变形、构造变形、冰川均

衡调整为主综合决定着青藏高原整体毫米量级的地

壳隆升现状. 亚洲水塔水储量的亏损与盈余空间特

征对应着的负荷变形贡献着青藏高原地壳的区域隆

升与沉降，全球冰川均衡调整促进了青藏高原的整

体隆升，另外，剥蚀沉积作用对高原地壳变形的影

响也较为可观，但并未体现在 GNSS观测量中，而

构造运动仍是使得青藏高原地壳隆升的最主要因素. 

3.5    青藏高原隆升的动力机制分析

无论是青藏高原历史隆升还是现今隆升，其背

后的动力机制都尚未获得相关定论. 科学界认为的

青藏高原变形动力包括印度板块向北的挤压应力、

地幔流动对岩石圈底部施加的拖曳力、地幔热物质

浮力、均衡调整动力等（刘德民等，2024）. 地质、

地球物理、地球化学等学科方法给出了相关动力机

制模型，如双层地壳模式（Argand, 1924; Beghoul
et al., 1993）、地壳通道流模式（Royden et al., 1997）、
地幔对流、岩石圈拆沉（Houseman et al.,  1981）、
多因素驱动模式（许志琴等，1996）. 这些主流的

动力机制和运动模型虽很好地对区域或阶段地壳隆

升有着合理的描述与论证，但仍不足以充分准确地

解释青藏高原的隆升与变形（Ding et al., 2022; 朱
介寿等, 2017）. 在一些青藏高原地壳隆升的 GNSS
与 GRACE观测研究中，这些动力机制也被用于物

理模型约束或结果结论的讨论分析（如表 2）.
 
 

表 2    青藏高原地壳隆升可能的动力机制

Table 2    The possible dynamic mechanisms for the uplift of the Qinghai-Xizang Plateau's crust
 

动力机制 模型解释与地壳运动特征 应用与讨论分析

俯冲作用模式
印度板块俯冲下插，地壳物质补充形成“双层地

壳”，地壳增厚与抬升

符合高原南部区域的显著地壳增厚（Jiao et al., 2019; Rao and Sun, 2021;

Wang et al., 2001; Zhang et al., 2004）

地壳通道流模式 深层物质解耦，进行横向运动，地壳厚度调整 青藏高原东南缘的区域性存在（Gan et al., 2007; Yi et al., 2016）

地幔对流、岩石

圈拆沉

上覆减薄的岩石圈受浮力作用向上抬升，

地壳整体隆升

青藏高原东北缘、北部区域的区域性存在（Jiao et al., 2019; Rao and Sun,

2021; Zhang et al., 2021）

多因素驱动模式 综合运动机制，地壳隆升与厚度调整
青藏高原物质运动的空间差异特征需综合机制来解释，卫星大地测量研

究暂未充分验证与讨论该模式
 

GNSS观测资料描述了青藏高原地壳的基本运

动学状态，已初步形成连续变形的学术观点，印度

板块的俯冲、挤压作用促成了青藏高原地壳的缩短

增厚（Wang et al., 2001; Zhang et al., 2004）. 另外，

Gan等（2007） 发现青藏高原内部最显著的变形

表现为绕喜马拉雅东构造结顺时针旋转的“冰川运

动式”流滑带，这一流滑带可以被认为是下地壳黏

滞性通道流驱动上地壳高塑性物质动向逃逸的过程，

支持着区域地壳通道流的动力机制.

基于 GRACE的青藏高原内部物质迁移研究也

对相关的动力机制进行了有效应用与验证分析，Yi
等（2016） 的青藏高原东南缘地壳厚度调整定量

反演结果表明地幔对流引起的岩石圈拆沉模型和中

下层地壳通道流模型能够对该区域的地壳运动现状

进行较好的解释. Jiao等（2019） 给出的青藏高原

中部不同区域Moho面隆升、沉降状态差异的结果

也倾向于双层地壳与对流移除同时存在 . Rao 和
Sun（2021）给出的以印度板块碰撞前沿为界的青
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藏高原南北区域地壳分别对应着显著增厚和减薄，

与地震波速异常空间特征相符，且南部地壳增厚量

与印度板块挤压补充量相一致的结果，表明青藏高

原南部区域受到印度地壳的俯冲下插作用，达到双

层地壳厚度，而青藏高原北部地壳在地幔对流作用

下发生岩石圈减薄，双层地壳与地幔对流、岩石圈

拆沉的综合变形机制可能更好地解释青藏高原当前

的变形、隆升过程. Zhang等（2021）的青藏高原

东北缘地壳减薄与隆升结果，认为可能与地幔岩石

圈对流移除后地壳均衡调整有关. 这些利用卫星重

力手段开展的青藏高原地壳隆升研究均是基于已被

广泛认知和讨论的机制模型来开展的，获得的认识

也较浅显，但揭示了青藏高原地壳隆升机制的复杂

性，通过卫星大地测量技术对青藏高原全区域持续

的观测与研究是未来我们更深入、更准确认识高原

动力学问题的重要基础. 

4    总结与展望

全面认知青藏高原地壳隆升问题是地球科学的

愿景，也有着较大困难. 卫星大地测量技术相对其

他方法手段具有明显的时空优势，因而从卫星大地

测量这一视角认识青藏高原的地壳隆升是具有重要

意义的. 本文从青藏高原地壳隆升环境、地壳隆升

的卫星观测、Moho面深度变化的反演、整体地壳

厚度的变化、各因素对地壳隆升的贡献及青藏高原

地壳隆升动力机制这些内容进行了梳理，但青藏高

原地壳隆升相关成果众多，因而本文可能不够系统

详尽. 通过总结本文的介绍与讨论，得到以下初步

认知.
主要结论：GNSS与 GRACE在青藏高原动力

学研究中具有巨大潜力与重要价值. 两者的联合研

究揭示了现今青藏高原地壳整体毫米量级的隆升现

状，构造变形、负荷变形、冰川均衡调整等综合贡

献着青藏高原的地壳隆升，青藏高原Moho面深度

有着较大的调整且空间上存在差异，地壳并不处于

一致的增厚状态，而且区域地壳厚度减薄是可能存

在的，其背后的动力机制较为复杂.
存在问题：（1）卫星大地测量观测资料仍然

稀疏. GNSS台站分布的不均匀性与有限观测时长

限制了地表隆升估算结果的准确性；卫星重力涉及

到的多源信号分离的复杂性及其低空间分辨率，致

使地壳物质调整反演结果具有很大不确定性与无法

反映出更局部信息. （2）青藏高原大时空间尺度动

力学研究的困难性. 青藏高原是由不同地体、不同

构造区、不同水文流域组成，不同区域的差异性在

卫星观测的动力学研究中并未作有效区分与充分考

虑. 高原的形成、生长与演化持续的几十个百万年，

当前卫星观测资料能否有效验证青藏高原地球动力

作用的长期稳定性. （3）卫星观测视角的动力学研

究仍是基于已有的机制模型来开展应用分析的，在

相关研究中并未对不同机制模型进行充分比较、验

证及融合.
解决方案：目前卫星大地测量技术对青藏高原

动力学研究是尝试和开始，为解决以上问题，更好

地认识青藏高原地壳隆升问题，更持续的观测与更

全面的关注是基础，准确有效的多源资料融合与综

合信号分离是关键，多学科方法的综合研究和约束

是重点. 因此，需有效提升青藏高原区域的观测时

空精度和延长及扩大观测周期，包括融合下一代卫

星观测资料、国内外已开展的横跨青藏高原的地表

重力观测任务资料以及将来的 MEMS重力观测资

料，和实现 GNSS+InSAR的高精度、长时间跨度

的三维形变观测；加强物理建模及数据处理方法的

研究，尤其是信号成分分离与反演方法的创新与进

步；进行有效准确的多源数据应用与融合，提供

更多的物理和数学约束；青藏高原地壳隆升是涉及

到整个地球科学各分支学科的重大研究课题，只有

多学科交叉融合才能得到更合理的创新性进步与

认知.
未来展望：青藏高原是亚洲高山区的核心区域，

天山、帕米尔高原等都是亚洲高山区的重要组成部

分，这些区域的地壳运动与青藏高原地壳隆升过程

密切相关，未来将青藏高原的动力学研究拓展到整

个亚洲高山区，对深度认识板块碰撞和全球气候变

化下青藏高原动力学问题大有益处. 随着卫星监测

技术的快速发展，地壳变形、重力场变化监测资料

将更加丰富，水文模型、地质资料等将不断精细与

可靠，多学科方法交叉融合是未来科学研究创新发

展的趋势. 因此，相信未来基于丰富可靠的资料，

在学者们不断努力下，人类对青藏高原深入认识面

临的巨大阻碍将不断被清除. 最终，青藏高原研究

将成为人类对地球科学认识的宝库. 
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