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Abstract: As the "Roof of the world", the current state of crustal uplift on the Qinghai-Xizang Plateau is a sig-
nificant focus in Earth sciences due to its complex geodynamic environment and profound implications for region-
al and global climate, hydrology, and seismic activity. Understanding the mechanisms behind its uplift involves ob-
serving crustal movements and analyzing their dynamic processes in great detail. With the rapid development of
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satellite geodesy, observation technologies centered on the Global Navigation Satellite System (GNSS) and the
Gravity Recovery and Climate Experiment (GRACE) have demonstrated remarkable advantages and potential in
the geodynamic studies of the Qinghai-Xizang Plateau. GNSS provides highly detailed three-dimensional measure-
ments of crustal deformation, enabling precise tracking of horizontal and vertical movements. Meanwhile, GRACE
offers comprehensive time-varying gravity data, which is crucial for understanding mass redistribution within the
Earth's crust and mantle. Previous research has effectively combined these two datasets to study the intricate pro-
cesses of crustal movements and solid mass migration on the Qinghai-Xizang Plateau. This integrated approach has
yielded quantitative results of vertical crustal movement, allowing for a systematic evaluation of the current state of
uplift. The combination of GNSS and GRACE data has enabled researchers to delve deeper into the mechanisms
driving the uplift, providing insights into the interaction between tectonic forces and surface processes. Therefore,
this paper aims to review the scientific progress made in studying plateau crustal uplift by integrating GNSS and
GRACE data. It will cover various aspects such as the observation of the plateau's crustal displacement field and
time-varying gravity field, the estimation of load deformation and the extraction of tectonic deformation, and the in-
version of changes in crustal thickness and the depth of the Moho interface. These research findings offer a compre-
hensive understanding of the geodynamic processes. Furthermore, the paper will briefly discuss the environmental
background and dynamic mechanisms underlying the current crustal uplift of the Qinghai-Xizang Plateau.
Keywords: Qinghai-Xizang Plateau; crustal uplift; GNSS; GRACE; load deformation
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GNSS and GRACE joint observation of crustal uplift in the Qinghai-Xizang Plateau
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Fig. 1 Tectonic and hydroclimate environment of the Qinghai-Xizang Plateau. (a) Distribution of faults and seismic activity on the
Qinghai-Xizang Plateau. Fault data from Styron et al. (2010), seismic data collected from the Global Centroid Moment Tensor
(CMT) dataset from 1980 to present (www.globalcmt.org). Blue dashed lines represent the distribution of major suture zones,
with dashed arrows indicating the direction of plate collision dynamics. (b) Distribution of monsoons, glaciers, lakes, and river
basins on the Qinghai-Xizang Plateau (from Rao and Sun, 2021)
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Fig.2 GNSS and GRACE satellite observations foundation. (a) Distribution of stations in the Qinghai-Xizang Plateau and its sur-
rounding areas, with the background showing the distribution of faults in the Qinghai-Xizang Plateau (from Wang and Shen,
2020); (b) Global monthly gravity field model (data sourced from CSR mascon)
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Fig.3

Vertical deformation velocities and their differences in the Qinghai-Xizang Plateau and its surrounding areas. (a) Integrated

results (from Liang et al., 2013; Pan et al., 2018; Zhao et al., 2023); (b) Absolute differences in rates estimated by different
studies at the same sites, in units of mm/a. Blank values indicate a lack of comparisons for the same site's results
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Fig. 4 GNSS imaging of vertical movement in the Qinghai-Xizang Plateau, and Fig. 4a and 4b are from Xiang et al. (2021) and Rao

and Sun (2021), respectively
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Fig. 5 Methodology for inverting Moho depth changes
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Fig. 6 Schematic diagram of two plausible models beneath the eastern Qinghai-Xizang Plateau. In the (a) deep crustal flow model,
there is considerable flow of the middle-lower crust causing crustal thickening and surface uplift. In the (b) hybrid model of
deep crustal flow and convective lithospheric detachment, the surface uplift is results from the uprising Moho and moderate
middle-lower crust. The values are constrained by the space gravity and surface GPS observations, as well as a restriction of

the Moho moving direction (from Yi et al., 2016)
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Fig. 7 Results of Moho depth changes inversion in the Qinghai-
Xizang Plateau. The black dashed line represents the
delineated boundary between the northern and southern
Qinghai-Xizang Plateau (from Rao and Sun, 2021)
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Table 1 ~Crustal thickness change of the Qinghai-Xizang Plateau. Unit: mm/a
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L M BRAE BT AT S ORI AE 73 . Westaway 55
(1995) it &7 B B AR B lf 4 % i %) 75 o R A7)
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et al.,, 2020; Fu and Freymueller, 2012; Hao et al.,
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Green BRI AL AN [F] 7 ¥, Bk T 1% 28 07 45 3R U
Green BRACAT LLH T RAE S L& 70 A6 F B2 BRAE
B AR, Kb, Farrell (1972) 1) fifi
g BARERME. A4, —2232E (Guo et al,
2004; Mitrovica et al., 1994) #&H T M BRI i 15 )

H Love % B 4% v 55 BRI A7 far A2 T8 19 U7 V5. B
GRACE IR 550 b I R A 1207V B9 8
W1 & J7 % (Ferreira et al., 2020; Fuand Frey-
mueler, 2012; Pan et al., 2018; Saji et al., 2020) .
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Changes in water storage and vertical load deformation in the Qinghai-Xizang Plateau. (a, b) Show the long-term trends and

seasonal annual amplitudes of changes in land water storage represented by equivalent water height, respectively. (c, d) Repre-
sent the trends and annual amplitudes of vertical load deformation
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Fig. 9 The contribution of vertical load deformation in the Qinghai-Xizang Plateau to surface uplift at GNSS stations. (a, b) Repre-
sent the research results based on Pan et al. (2018) and Zhao et al. (2023), respectively
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FiARYE Pan 2 (2018). Wang il Shen (2020)
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Fig. 10 Crustal flux balance (a) and contribution of various factors to crustal uplift of the Qinghai-Xizang Plateau (b) (from Rao and

Sun, 2021; Westaway, 1995)
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J& R3S HUR P 1 AR SRAFAH 5C E 8. B SN
TR e S5 A2 T ) /B B RE AR R m) b B % s N 7
W R XS A RS S 0 ) 4 T e B o
VL BT RS A CRIEEIRAE, 2024) BT
HUERPFE . HhERAL 2S5 BTV T A OB AL
HIALAL, X272 (Argand, 1924; Beghoul
etal., 1993). HiFc@E AL (Royden etal., 1997).
Mg XF i . A A B PR YT (Houseman et al., 1981).
ZRRIENBA (FEZE, 1996) . XL TR
BN JIWLHI IS B AR Y B AR G 0 X 3B B e P
THEE ARSI, B 2 AT /- dEf
AR = R B 548 2 (Ding et al., 2022; %4
I AFEE, 2017) A BE T Rl e SR ST T K] GNSS
5 GRACE Mt sir, XLz JHLH e H T4
PR 2 B s R R BT ot (g 2) .

R2 o HRE TR AT RERI ) J AL
Table 2 The possible dynamic mechanisms for the uplift of the Qinghai-Xizang Plateau's crust

PN AU g5 b 5232 BhRFAE

BE S s

ENBERR AR i T4, Hb5e W Brh SEIE A “ UZ e

(EHHITEN :
5 FHIE ST

FF-Er v T P #5158 14 i 35 72 14 JBE (Jiao et al., 2019; Rao and Sun, 2021;
Wang et al., 2001; Zhang et al., 2004 )

B el T A | E AR, HEATRE 2 8), Moo R TR

T PR A I 2 K I AEAE (Gan et al., 2007; Yi et al., 2016)

DML, S | AR A 52 7 AR AR T,
PRt HuFeHE IR T)

kR AR S . ALER X 38k Y IX 3 A7 7E (Jiao et al., 2019; Rao and Sun,
2021; Zhang et al., 2021)

ZNRIMAEA | LGz ahfLi], Hre TS IR

TS I ) I B ) 25 ) 28 S AR AE TR 2 A ML SR A e, T Rl
FEE AR IS AR S TR

GNSS WLl BRI IR 17 ik e It 7 i 2 A dE
RS, CVIPTEBOES R T AR e, B
BRI 55 AR R BT 75 780 s 5 b 52 1 4
5 (Wang et al., 2001; Zhang et al., 2004) . 5 4h,
Gan 55 (2007) A 375 5w B PN i A O 2 AR TR
RINNGeE Db T AR 018 25 I £ e e 1) “ ok )iz
7 G, X A DA e T R R
i P I AL IR Bl b i SR VR T Bl ) kR ) R,
SRR X 3 5 E R Bl ST L.

5T GRACE [ i = i A 3047 o 7% T 9t
X AR BB JIHUIEEAT T A BN 558 0E 58, Yi
& (2016) T R = i AR A 5 JE BT R R E =
SR 2 SRR B H G0 AL 5 | (1 25 A Bl R TR 2R i
R 2 M 5 T AR 6 % 512 X I8 H 5B S DR
AT R AR RS, Jiao 25 (2019) 45 H I K s SR
AN [F] X 45 Moho THIFE T DTFRRIRES 22 7 1) 45
A ) T X2 M 5 5 X U B R B A7 7E . Rao Al
Sun (2021) 25 H 1 LA ED BE AR HRAIE 3 5T v o AN
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(AR . BETFid F2E. Zhang 25 (2021) (75 5 e J5
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B I A% Bk I L e 24 T A A oG, X SR PR
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