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Abstract: With the development of satellite technology, low-orbit satellites equipped with high-resolution
magnetometers have become an important tool for measuring the Earth's magnetic field, which provides continu-
ous observations around the world regardless of ground and low-altitude weather conditions. Currents in the space,
particularly the ionospheric currents, are the main source to cause the magnetic field perturbations at ground and the
low Earth orbit (LEO) satellite altitudes. In this paper, we briefly introduce the development history of LEO satel-
lites for measuring the Earth's magnetic field, and the in-orbit calibration processes of magnetic data. In addition,

the findings and generation mechanisms of ionospheric currents are reviewed, and the methods for reverting iono-
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spheric currents by using the satellite magnetic measurements are introduced in detail. Currents derived from
ground-based and satellite magnetic measurements are not always consistent, and sometimes there are significant
differences. Reasons to cause such differences may be related to different data sources (e.g., ground-to-satellite,
satellite-to-satellite) and the assumptions in inversion algorithms of currents. Based on limited observations, inver-
sion is often based on assumptions about the geometry and location of the currents, that may not fully agree with
the real current distributions. Therefore, combination of ground-based and satellite magnetic measurements,
through cross-comparison and cross-verification, is an effective way to test and improve the rationality of the as-
sumptions in the ionospheric current inversion algorithms. Establish the theory and method of space weather moni-
toring based on the combined and fused magnetic field measurements, will greatly improve our understanding of
the ionospheric electrodynamics, the state of the magnetosphere, as well as the coupling mechanisms between iono-
sphere and magnetosphere.

Keywords: low Earth orbit satellite; spaceborne magnetometer; ionospheric currents inversion; solar quiet cur-

rent; equatorial electrojet; field-aligned current
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Fig. 1 Schematic diagram of the sources to cause near-Earth magnetic fields (from Olsen and Stolle, 2012)
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Table 1 International and Chinese satellite missions for measuring the Earth's magnetic filed
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Table 2 Ionospheric currents and their induced magnetic field

variations
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Tk AN B A, [R5 v IR A5 31 25 () FRLR Y
AN 7 PR AN 52 DY A 15 1 37 0 1 1 A 12 1 2
A2 VYR TR (R MR R B8 P e JE A B 7
F1RY PR JAT G % ) RO 45 DR 2R AR s ). M 22 9 1 [
I UL 0 52 56 % 1) R IAE 1) 5 — A B R A1) {5 2 D )
1) Swarm 2 £ M (Ritter et al., 2004) . %2 FEH
SRR, HA PR TR s A R IR HE
AT, AT R LA 140 X FE IR AT
P R LB A AE — e [IRE (b 5 B
M, TR e — AT, w] B Y
TG BB AHEIA AR 5y, AT 3R A5 2 B T DY ik
KI5 A R AR, T Swarm TR ATk [AF1
8, ZJTERF I R BT PUE IR A G,
MR T2 T A A0 A5 S P T B H I ) 2
77 1) 37 1) B R DR 0N, AR TR B 1) B I R 7
= B K 2a fr7x . {H @1 Dunlop 1 Liihr (2020)
fath, %07V I LA AR MR 4 5 R AR 2 1) RUBE
Q5P R TR T e s DY 20 T 46 e 1) 7 ) [ B A7 5% AE

JRIE X, P T (A B PR 25 4 150 km,  {H i [A]
P A 0 8 0 T SR kDS AE A X FEIE Swarm 7
WP EPE ) R, PR RN, TR
E S VE LA P S ] 2b 45 Y T AE R Swarm
MU S ) LR SRk, TR ) R B AR A X e
T 37y 10 "I DA B T BB AR ) FEL R R AR ) FUR. (iono-
spheric radial current, IRC) JEHfPEFIRZM.

M IR Cluster 1 Swarm T2 T+ &I /24 a]
DLEH, REFHZMTRERR . 2 min] P
e 2 [ L UL S s ARG B2, ARZ 7 Y R BB ST Y
2 1) LR RS DR 1 B R] R 6T B8 /N RUFE () LR
W) 55 R FH Ak T B 0T 2 () i A T R R S L.
B, Gjerloev 2 (2011) FIF] ST5 T2 & BRI
AR 73 70 LR PUEMIE 5 Z A B AH R HE.
ST5 LREALT-RI IR Cig R, TLAE [l & M LED 12 W
BB L e X — LRI R E S, A
DR B s 56 /8 RUPRE By 1) FELVRAE SIS T) Y RO T T2
SEEED Bk, AT 25 R AR BN ROEE 37 1) FRL T
BE I (AR AL BT, TR R S 17 B (5200 km)

(@

di,
di,

5 d

SwA SwC

990 -60 =30 0 30 60 90
2 /()

K2 (a) sl A E ST EREEREE (B
H Liihr et al., 2015); (b)) Ffi 45 &AL F93% M) s
(L) MR ER GEE) b AHE oA
(3] @ Liihr et al., 2019)

Fig. 2 (a) Schematic diagram of the averaged current density
based on a close-loop inversion (from Liihr et al., 2015);
(b) Uncertainty distribution of field-aligned current (red)
and radial current (blue) as a function of latitude (from
Lihr et al., 2019)
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BB e, TLARESE L4 Bl Lihr 55 (2015)
FIFH Swarm J2 R 7E 5 HIAL T AT 5 BR K AL (R[]
PH 2] 10 km BEEF R A28 0D, RIS
HLR R RT ARESE 10's, 10 K R B 3 ) HL 3 AT DA
4 1 min LA b [FEE, 280508 0T T 3 1A LR
B 22 B2 7 Al R RS, R IR 3y [ BLIRAE 22 2 7 )
R FELV N HAELR L7 1 REERT 4 £, fEEM O
HORAEMAMEBRIX D 3 18] HL I AE 28 FE F &4 5 7 1)
R R BRI Xiong 25 (2021) X} GRACE Fol-
low-On X ¥ 0 b T 717 i 2R 6 A4 B4 1) T2 w3 S0 s
BEAT THIB R0 M, SEREX H i T2 FAC BE R
()26 B AR Ak, BT DAAS 2[R — 26 b/ RO 3 1)
HLE DR AIREI Al (48 26s) IR it
X 12 TR A2 IR AR 2 BT R ORI, 3 1) IR AR
SEMELE RAAT S L0 B i T IR AR, ERE
/N R 37 18] B AE I 27 A2 R AR AL S R 2. W] LA
W, ORI ST/ RUBE AL AR I A2 ) P BR300 T
SIS B T ST

3 (A SRR

ARATEEE S AR TR RS I S LR R
W R R 5%, BAE Sq . JRE A
T B ER . AXCHEER. X7 A R

3.1 SqHER

7 Hi R A TRDULI 21 1A B0 0 g H A2 4k
FRONKFHERH (Sq) 281k, HHiEiE: H A R
HLI R GEIE AR Sq HUIL &, 1634 4, Hellibrand
TE M52 B B AC G v e BIE B e ORI T A R
1R BH &8 H 7635 & 1k . H 3 J5 5k Graham (1724)
ORI AR A H AR, X R A BIER E T
K. Gauss (1838) KM —FA [ T8 NIHT & 1T,
TER WL e 7 —ms 1, MmEs 7w
DB RERE, 8 A BE AR A T 25 2 AE I Ab I 5E . At
HZFERRINHEAT R0, DAL 73 24 i F 0 X 3t 1
AR Ak, T8k o K 3 LI B AT U ) A R A AT
Gauss FF & H T 43 25 40 FN P S5 0T b 2 16 37 T R
& T, BERIE R Hrik (spherical harmonic
analysis, SHA), HuBR b AT A — s5 A WL mT LLH
— RYIERIE R ECR R R, SR E 2] 40 5904 70T
FEM IR H AR EAE, AR P “BRE sy
Mr” N Sq #3753 #r. Stewart (1882) i 1l
tk Sq A4 2 M e J2 R F X e b A 3 1) AR

SR AR . AR IEAR R A ALELS, SRR (D)
Fi IRy (B) Wigdh& A msh# (UxB),
M 72 A6 # 3% A L 3. Schuster (1889, 1908) ¥ 1K
I BRAE 7 BT T VERE T T A ERVE N g AR A 3
FAGE T HENBR RS, G H L2,
FLI RS B TEAE S ERAN A, Bl IR AE 2% DA
ERRAERS), AR H T IR P )
N REIAL. Sq R HOAFAE i SRAS BIRAS ks e R
W F 52 5 4F 52 ( Cahill, 1959; Davis et al., 1967;
Maynard, 1967; Pfaff et al., 1997; Singer et al., 1951;
Yabuzaki and Ogawa, 1974) .

bR, Sq HLAE A N A2 B R AU H M XU
B ORI 263850, PR AR A IR
A=A, X R TR R R
A KR AL R L™ A ) HLIRAE 90~150 km
(1% 1oy FEE U R A SO, 3 PR Dy o v 5 LAY £ i
AR H 5% (Pedersen conductivity) FIE /KL 5%
(Hall conductivity) FGHE K. 3X — =y FE 78 [ 18 7
FROHES 2K L. A\ Sq IR AT LU
SUME) Sq FELUAT 4 AL R 5 1K) 2 R DR 3 A v PR AU R
SR MNESEE, S RFLEHMELR, ME
6] FLAAR /IS, E Sq FL I PRAN IR EZEL R, 23l or
TIRER AL, SHEIRZ N 200 KA. JbFBR A
RN I RS, TR 2 BRI £ 7 RS, i e
H KA T Hh 7 I 11:30 (£30°REZE b, el 3
T, Sq LI S 30 L i R ) 2 R OK BH A B AR 4k
BeAh, HT R ERIE A U 2 57, Sq
TIEA G LR IR, X —FER I H B i 2
PEARA, PO B A BRI F A R R T AR
HOREEROHE- N (EWINE SRS B SR~ NG Y 5 B 1
WAER AT S, b, BT H B S i T R AR 4
U I8 B TR T LA DG 2R, Sq FRLIAL 1) A A 5 E A R
I R R BH A AR A

Sq FELIAL M) S i - S AR R S R F 4 R
OB B Sl ORI A Hb S & b i — AN B R AN 2 2
HIEFEET A S EMAEE IR W 2 8%, FF
AR A R TE AR X PRI, FilA R B I A
BUIE TR A B v LUK Sq 3738 AT TR 4 1Y) S
B ABE A5 AR BE TR AR AT
FEHL B R R LI BT, Ik R R =
P VAL 5 1 088 L UL AR R IR R B 37 43 T AE S B
FH R, 38 SR TS 1 E 1 M08 rL e AR SR S
ZHEW S, HIX TR EESNE B

AT E B HR AR TE A 3 WL i
Sq FLIIITIE. HTHRHUE P E UTERE R =L,



H56E 1M REGEE, &5 P FARAUIE TR SO fe 36 L 8 )2 FLR AR +53

A% Sq LR

(ks sq ek

L

7

P ER Sq M )
K3 SqHGAAEE (51 H Yamazaki and Maute, 2017)

Fig. 3 Schematic diagram of the Sq currents (from Yamazaki
and Maute, 2017)

FLWEI7 W 2= RIS 52 Sq HL IR AN L e FL B 2 LR )
SO L, NAVVHEITE 7E 5 26 Ay XSO e il 2
T HL S 2 137 ) L R R BRI TR v B R 3 W
BARK B, AL PR FEHIX B JE F R
&, WAFTEIRRE IR R, BRI NG
) FELYA, B VA M AR 9 8 e BRI ) LU (H S AR
X 1) AR IR AN R, B 23k ) s
5 F B BN A K. 2T Magsat T2,
Olsen (1997) UESE T 1E F JZ#53k n AL T
BEEE (350~550 km) 7= A [ L35 20 9+10~20
nT, 5 Sq M= KEUE Y. Bk, ZEH|
FA TR W3 WO e B s 3 Sq FRLIR, B TR BB R
fIREh B2 15 1 2R 37 ] FRLIAL.

763X B R A4 Olsen (1997) & HIFIH 1
G WD B A AR 2 3 1) HRLR S KT B R
2, M5 U B RN Sq FL L. KT AR 7T o)
fENITE (8Bo) FIRRIE (8Byoipor,) WiHHSY, HI
AR (3):

r
R 3By
=3B + 6Bpol,horz

LsB,

R
im .
sinv P et
=D +
nm _ d_ P?(V)eim/l
v
d .
a—Pgoodmﬂ
%
2 3)
nm m Ply? (v)eim/l

Her, r 2 TEIHOKER, RZEHIRFEIE, OBy
N8B 73 1l K T A% 7K V- W7 A2 F AL RN ZR 08 77 1) b 14
I, Py (v) = Py (cost) A2 Jiti R VA — L IR B ik A bR

% ( Schmidt normalized Legendre function), 67&
REE, VEMIPLARE, oy Myn BRI REL. 8B
2 5 45 1) 0 J7 ) B R B A W) B 3 0 &
8Bpolnor, 72 NN LI ™ A5 AR M) W4 70 . e S48
EE AR 4 ) b o 5 [ 9 BRI 4 (1) R UL R T i A A
R AESERrR SO, SR B ARy A idioR RS
BB, 2 hY ) R R R TTER O Bior »
R H T At b, IR R G A B
o HINIE Sq HLAL AR AR 37 () TR, BE— 2D
T 2% R 7 0] LV T AR 0 9 AR 1 R Bk 23 B i A
ARSI Sq FRARL.

IR R AL v I E s 2R AT Sq FLR I
J5 16 55 O 00 K A e v BV e A AN B T 2
KL 1n) BRI R A, FEAG B Sq FLRLIN i
W 2% & T I B AE B v . R Dy TR A T 5k
Sq HEIR I XU HALIX 38 07, T Sq HLIR F EAE R
PR X 3k v B At 2. 1B O 81 %) e 4 i 3wl DA
W3 v REIR:

B=-VV @)
e I B R R W Ay AR (O R (YD)
M EIR ML (2) =AT7m, HgHAw] 5 h#%k
2R
10V
X= 0
1 oV
r= ~ rsind 94 )
_ov
ar

B K F IR Sq LR = b (AL B A g
JZEEmE, 110km) HIERSE Lz, MAETER
JZ r>R+h I REAT S RA L (6):

Vv =Vint,ind + Vint, Sq + Vext

V4

R n+l
=R Z (—) (@) cosmA + b)) sinmd) Py (v)+
r

n,m

R ) (B (B

nm

() cosmA+d)) sinmd) P (v)+

r . 7 7 H
RZ (ﬁ) (g cosmA + sy sinmd) P (v)

3o ()

(i cosmA +d)) sinmd) P (v)+

n
RZ (1%) (g cosmA + sy sinmA) P (v) 6)
nm
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HH, Vingind~ Vinesqs  Vexere HiBR P /2% M FL
Sq ML HEZ M I BRI T Vingind M Vingsq
RS TEMELFIHEAREG R, FIEE AT
B A A B A X PR . R AN A S (6)
SINTWAMER: (1) HUEREN Y Sq K
ke Q,, E:

a, = Oncyy, by = Ondy; (7
(2) Q8 AR B — N 137 5 ) 72 HLBR P 38 T R
() S A ZH R ) P 3 A TR A5 2

2+

o =-(77)z) ®
c /= FHERTTMAE, ¢c=R-600 km. F|H /) 3
UG AR AR Z A P B & RS R 2 AR RN
BRI REAN LK (9 R K H &R I Jingsq »
RI°A Sq HLt:

10R o &5 2n+ 1
Jint,sq = —— Z Z Vint,5q(0, Dy ©)

4n n=1 m=0 n

3.2 FRERER

FEMFRE IR AR AR EAT N, ZKF20 8 H )
Sq ZEAUNE AR K. 1922 FFEANZ) (Huancayo)
HIURE 5 3t 1 I MR 3 H AR AR L T IR — R A
MR “EMmAmM g ” | JE K5 %, il Bar-
tels /1 Johnston ( 1940) . Egedal ( 1947, 1948)
Al Chapman (1948, 1951) JoJ5 kKR T X #NZ 8l
FHIAE R i dik . Hod, Egedal 1 62 X #t
R T HERE T, R R T/~ 1EZ) 600 km
JaFEP B2 A N, I B 5K B R ST
R J2, JRIE G il 1 1w #7 F0 6 B4 B2 1) Sq 224k
KRN, X RS R B A AR — N E PRV
J5 1A SR ZA ) FE 2 R, 1 R AR AR A R 2 By
WA T rg b J7 m R b 4 3% . B J5 . Chapman

(1951) XM RAEMLARTE b2 I s I 9k oL B 2
AR “IRIE AT (equatorial electro-
jet, EEJ) .

R TE HLARIIL I 7 A 5 vt XU R RGO A 1
WK U R BAG O, Wi 4a B, 2 FIEHRK
REEZR I B KEh, 774 7 HEE TR N E
IR o, AR ) RS ZR HUIR opE, HH T2 3
ETFERAARFHEMEGRMRE, mTFRERE
i oogE, MAFHATE L TR R, A4 —4
In] ERIEAL LY By X PRSI ARAL FRL I 22 77 AR T
L H RS R BB opE, AR R ) EE R IR oyE,,

RS B opE, 2 F1 A T HIE K B oy P
7, TR B R B o, W2 AT 2R 1) A 25
L opE) — B2 A — AN G SR I 2R 1) FLUR, A
FR1E BHEER (Yamazaki and Maute, 2017) . fH5 8
R RSN THEE EZHSEK,
N RSk, AT R T AR E M BT R
HVEREALSS B F R 20 B T, 40 2 B L im i 30
( Cowling, 1932, 1948a, 1948b; Martyn, 1948) . {H
J& R ) B ULIIE SEAE G AR T8 O F R AAE T B
77 W 30 B B ( Lithr and Maus, 2006; Olsen,
1997) .
FUF BEJ BRI 7T 3 B T 16 AR TE AR S
i X R RE v B B A AR TE RN TR R R
SEEHE S AT DA TR e R 2 ) EEY 51
Wi3H BRL, 15 A (4 BEYE Bl X BEJ 23R 47 #F 53
Lithr % (2004a) T CHAMP T2 2 Hi i U il £ 4%
AL A [z 7 1 BEJ L% . 5 Sq K
8L, R 73R4S BRI Frgl i miin Rn:, s\ TLA
JFe W I ) o 8 1 3 B4R v 2 B HoAdL R 37 B TR,
e, EHE A BRI, Ein CHAOS B
(Finlay et al., 20200, & MZ E#Y . & A HE
T35 B bt J2 FRL I 5 RS B3 3808, FF AN T 00
bR B WA B Rk 253X = F o i oT ik, DASRTS
BRI RN &, L NAB. ILANE R

B (trm)
@ B &)
~50km = = = = = = = = - o0
AIEJ‘I ok, P ok,
Ji oE, ? ouE,=(0,0,)E,
~90 km + o+ + + + 4+ + + + 5

(®)

K4 (a) REBRERHEREE (5] Yamazaki, 2011);
(b) #= T EEME MM IE EEl R ZE (5158

Zhou et al., 2020)
Fig. 4 (a) Schematic diagram of the generation of EEJ (from
Yamazaki, 2011); (b) Schematic diagram of EEJ inver-

sion based satellite magnetic measurements (from Zhou
et al., 2020)
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REGEE, &5 P FARAUIE TR SO fe 36 L 8 )2 FLR AR +55

2B Sq HLIR R AT CHAOS 5 78 o Bt AL 5 (350 43 b
JZ B LS DR, I8 R 2 T E sk R A
LB £13°3:60°2 18] [ AB KAl 53X — & 73 LRI
WERNL, X B TTERMAB W iR f5, TERG AR 1E
B3 6 4% B RGESA & BET BT 51 IR %08

H T EEJ @& WS 7R3E 07 AR VG a1 8l i 2 iy
W, WA R IR AR T DUR i H R AE BED 1723 8] 43 A7
(Liihr et al., 2004a) . B 5&{B € EEJ AL T 110 km
R, A A AE L2005 46 GEH SR Quasi-
dipole magnetic latitude, QDlat) Y& [E P () 41 26474
) 2k B A A, AH AR 2R HUIR BT AT R 9 1° QDlat. I
SEHUTE B BRI B I 2 F T R A R A
AIRIRN:

Hol  h ol x
I L _Hob X 10
2 X2+ h2 ST X2+ k2 (10)

Hrb, ABFIAB 4%~ EBEJ 512 437 A6 m) 4
BAMEEN NoE; [RERABREEE: wh
H S E TR, AR LRSS S ERATE
mEREEZE, PEEERLIONIE; x N EEEH
WAL TT 1A O RE B, TR 1) R e LR A IE.

WK 4b, WL E T REME i SIS, 1
55 7 N AR AZ I 577 AR B RE 3 b 1) oy R
B N R RRN:

AB, =

)
x2(i, j) +h2(i, ))
o xG@))
x2 (i, )+ h* (i, ))
He, Jo)MREFH AN LB EREE; AIER
PN FHAR £ H i A B S, 3X B AT 110 km;
x(i, j) = Reur - sin(A B(i, j))s h(i,j)=Ah+ Rew[1-
cos(ABG, N1, HEAL T K, HAABGHNE i
AT SRS AR A E 2%, RuflE
EEJ Mm%, SR 110 km; ARfRER TLEEL
L P R R T v P 2 (] R B

BT EEJ 512 1 k3% ROz /ST W00 s JE Bl i
W%, EEJ FislRRIbs S T RoR N
B-b B, -AB.+B,-AB,
"Bl IB]
Hrf b NAR 1A EEY 5l HIRES A K& B B4y
AR 5% RS ARG SR B, BB, 73 W
) A5 FEL R (e AL T RD T LA 40 =

gia o (1D MoC12), 41 DR E
55 i AW 55T 5] AR R W RO

. I
AB.(i, ) = —’% J(j)-Al

1
AB. (i, ) = “zinJ(j)-Al (1)

AB

(12)

. 41 B, (i)-ABx(i,j)+ B;(i))-AB;(i, j
AB(’):Z,-=1 () ( |]l)i(i)| () (@, J) (13)
gity (13 A (1D X, ArCASRAFER i A A
EEJ JT 51 2 it b5 B 14 3% 1 EET FL 325 22 T 1) 9%
BT TR EEY WA 46 B3, {8 A LA
2] 41 AR HIR I B % 5, HE T AT DURAE
EEJ )25 6] 43 4.

3.3 EFEIKIFEER

3.1 WA Hm 1, HM Sq R R FE R
HH RS AL BRI AN BRI R ), FEALE BRI 2
WP EHR S, B ER R RIS B H IR 5 B K BH
BRI, W AT B S I A R
T AR B R PR TR ANE], 5] — I 20 B 2 2 4
AT 380 ) K BH R S AN [, AT P 1 2 ) R A
AT ZE SR, BRI RS AN KU RSN )
Zr R RAEE RN, BRI sl BT
MK F AL RN () 22 508 Bl deoK. B A v i
TIHE 277 I B R R RITE ST K, B AL R
TE ) FL 34 22 22 IR B BRIA) VR ) 20 3 1 37 1) R
( inter-hemispheric field-aligned current, IHFAC) ,
DAP- 7~ BR8] (1 22 5, X FF THFAC R P9 AN 22 Bk
] Sq HL I R EH LK (Fukushima, 1994; Maeda,
1974; Stening, 1977; van Sabben, 1964) .

HFHig#HES, Fukushima (1979) $#£H T F
J& BRI A SR, W] S B AR R R
IHFAC )3 7] B A WY S 1 1b 77 ISP RO, HL e 3R
BT IS LA B 2= BRI F) & 222 3K, T AE IR AR A1
B I FEL VAL 0 ) A A 2 2 3RO R) B 2= 2 BR . Olsen
(1997) FI ] MagSat T 5 #4fs 15 A Hh i 2 1
THFAC. filt L IHFAC )77 [ AV 5 &2 (I B i
T —2. m SR dAbE R, U HEEE L,
T N 2~4 nA/m’. B ] CHAMP T2 WL
A% FE Wk % 4%, Lithr A1 Maus (20060 #& T
THFAC £ A [R] # 77 I ) FL AL ) A 8, RSk 1 7
1E/F- I 0B SEA7E U0 Fukushima (1979) 45 74 ffp 34
TP I 2 3 A 2= 2 BRI R S AR 20, BN 1)
pax ey R EPIRIES ST Eilrp i i V=i b ezl
H Swarm Ff4T RAT B PR AE [F] — I Z 1k
M 5 759 (¥ F J2 THFAC, Liihr %5 (2015, 2019)
HE—BUESE T CHAMP T2 W, FF &I IHFAC
IR E N E . B 23 R4 W E )
MEALTR A FRFWHRRR NS E 25
FAAL,  FUR BRSO T B BT R HAE
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(b)

KI5  (a) Fukushima 5 > Bk [ 37 7 BB (5l B
Fukushima, 1979); (b) % Swarm T2 Wl 52 i
B ER (A7 A R B (5] H Wang et al., 2023)

Fig. 5 (a) Schematic diagram of IHFAC flow direction pro-
posed by Fukushima (from Fukushima, 1979); (b)
Schematic diagram of IHFAC inversion based on mag-

netic measurements from Swarm (from Wang et al.,
2023)

A BZETT, IHFAC Bk mSsS, RrEsNE A, H
SR EE AN T ) 55 b B 28 A OC. Db s 15 B UL N 3
IHFAC 3 ) J 73 A R ST & B0 10, (B 47
{7 1E — %€ 1) 22 7. 1% H 45 S 0 % 7R Fukushima
(1979) & H B RV TN AECE — 2 [ )R BR . ek,
Park %5 (2020) F|H CHAMP 2T 10 4 ik
3 08 U EHE BT AL T LK AR 0 5 B AL A THFAC 78
W) F J2 B BT 98 R ILAE 1 7 T8 AR A7 AE — X H
W, ZHERWRNE S RIE F X TE B R R
FRIE F X T B FL IR 2/ AR A0 R AR 1 7 R Ty
B 16 miflfa®ise, FEHAESH 2 H N A2
TS, T IR LA, AT A S A AR A F
NARIE F X B R AL 7 g (/£ CHAMP &
T P 1% (e % R I R L T 20 RE S FE R R YD
fiATT B 45 B30 Kk I THFAC 75 £35°M4 46 1t W 1t %
ARIEE. FET UL R A5 AT LA LT
IHFAC F=A ML 2 A R AE f 5 H & B 0 1 &
K ZANIRA Rtk — BT,
TR B A R EE T RRA JR) Swarm TR 3% W
M % 38 THFAC # J7 #% Cn | sb Alrzm ) . AR 4
THFAC F5E L, FAT R Ho2 LB s 4 B A3 1)
HLR S 218, B

FACy + FAC
THFAC = % (14)

Horr, FAC 23l B, HomT DU R s 2 A2
AR (IRC) WM IR RS, WA (15)
PR

IRC
sin/

HL 5 A2 1) FL L ) B AR T B VR TE 3.5 R R TE
N, FAVRIE, 7EH-—HOEEE WK FAC % &
BET SLRi R AR R A, T E R S
FE R X 4, HL IR R T K. M SEBRH IR 37 1) 43
fiKE, (AT AE L BRAG 2 3R B 2 Bk B0 A
WS 2 T REAAE R E N ESR. N T ERE =
T3 %o IR — Rk 14 N FAC HISZm, 75 B8 I 815
F RS PR PGB AL R FAC BEATIH—1k. 78 P A
g Tt fed, TEMPUE & EF AN, X
¥ 52 m IHFAC tH S At [k, 8% 208
IHFAC #7148 3 — 463 E 2 110 km =)E |, X
FEAETS S 25 SR 5 T2 (e 1) v B K.

25 BTk, FR Swarm XU L3 W 1 5 e
JE2 BRI 77 26 S0 2 A0 ) THFACy A1 THFAC 1)
AN

1 IRCg IRCy
IHFACyN = —= B; 16
N 2 ( Brgsinls  Bpnsinly ) fon.N (16)
1{ IRCsg IRCy
IHFACg = —— + B; 17
S 2 (BF,S sin/g BF,NSinIN) ion,S an

Horbr, Ben Al Brs 7370 J9 B A6 2 BRI 1L A $iE S 5T
ﬁﬁﬂ‘ﬁ’ﬁﬁﬁ%ﬁgy Bion,NﬂEDBion,SéJ\%Uj"jiéL%jjg)%
ErACEER E Z M (110 km) 18 SR 58 L.

3.4 REXEBEER

WX AR REROCX WHEEE E EEE (F
o 5 B H S5 0N 110 km) KPR 30 i F B 2 He
Wi, IER A AR T 3 n) I ) DA A R
(Pedersen current) LA % 545 & R0 i ) AT
FE/RHL (Hall current) 20k (WK 6a. 6b i) .
WOEAR IR X P 8 B 2R ) R YL AN B2 B 7 ) L R 3 A
J AR A S BHASIESE T (Heppner, 1972) & 1Z HLR
A1 EZHF1E. Birkeland (1908, 1913) it H7E
2R v 24 X IR P Bh 5 RO X N AR &
HIR KK R. 1& Birkeland HIP TAEZ J5, KEH
KT IX HL B % B e 045 B 0028 4518 fe A2 =
AEAEVY [A) AR VR, B ONAFAE 2R [H) L AR UL (Silsbee
and Vestine, 1942) . Harang (1946) #&H 72—
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AN AR AR, B AE B B A7 A6 B
ARIA) AR, BT R T AR T ) PG R FL AR IR
A R 1) AR IR AR R S o I BN AN, R
P37 DN 100 2R ) PR VAR ) A A% 20 81 1) 75 ) FLBIGAE [XC
Ny, R R LI ) AR B SR TE AR (Ros-
toker et al., 1975) . 41 Fil{3% B [X 35k 1) B 37 5% AR B
75 # #% 2 Harang AN 3% 22 [ ( Fejer and Scherliess,
1995; Hughes et al.,, 1979; Kamide and Kokubun,
1996; Rostoker and Kisabeth, 1973; Tanskanen, 2009;
Weygand et al., 2021) .

BT 5 AR BRI AR & X B X R B 2 K B R T
JRIIKERE T, NATEUAE A0 T8 L % B 2 /K FL iR
R AR H AT TR R H R JE 3 ) L
Bk, @EMAEARE TR EE T RN ERE
FER/NFAE. B, SEBR AR TG ) AR B 1
DX 2 [X 37 fi) F V7 ) A2 R L 97 B . ) 7 ) R
TR IR BNIE H D 500~1000 nT, T 7] 4R (¥ B
S EWIREL  H— 2 AR T ], ARIX
FLAR VAR 855, HRBR T mgh X EAE R

12 MLT
(b) (ET)
S/ A
18 MLT f
s |\
.......... .
TR S pypv P AR
=)

B, R W RGN, FHEEENOGIX Y
A XY . NEH BFE, WX BERE
7 e HLLS R R Y 1) S R B A R, (H
T4 X AL AR AN AE B BR R 10 772 110 km &b
3, FUCAEHERIAE =4 1 P iR R G ek
I HBRE T4, EEAnfE 9 2 1) AT fE ik £ 3000 nT.
T IR X B AR RS B 9, Davis A1 Sugiura
(1966) FIFI AL T AR X 12 ANSEROE X 4
YIRS G, R i Ab m  8h 7y B AT
Gtk A, € T AE FREL XX HOGAE R R 7 A
BB FL RS 2 FL P AR R B AL T — A
Fiv ERMNE, S SuperMAG Hif#i 3/ (Newell
and Gjerloev, 2011) i 1 100 2 /™M 1f & uh = 78
5 22 (1 U000 A A OO A O 4R TR 4R 2 SME
(SuperMAG auroral electrojet), LLHEFH T 115
JR 46 AE $REUH RS & b4 A 1A) 78 5 AN R R AL
SEBR A RGN FEANRE PR AR ARG IX

K FEL RS S L ) 0 AT, KA M T 6 i AR A 37 %
AP R i R BEJE B R DL R

K6 (a) X =4 AR (5] H Leetal, 2010); (b) R I6H B A AR 2 B X R (5] B Johnsen, 2013);

(o) LR X AR~ E R (5] B Aakjer etal., 2016)
Fig. 6 (a) Three-dimensional distribution of the current system in the polar region (from Le et al., 2010); (b) Schematic diagram of
the auroral oval and polar electrojet (from Johnsen, 2013); (c) Inversion of polar electrojet based on the line current algorithm
(from Aakjer et al., 2016)
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TR % ThI JRNZ FEL VAT I o R A . B B T T SR R
B FLLE O SRR, R e A AR R T
R 1 T R A T U 58 4 e 7 1) FELUAT 5 7B Y e T 4
BRI, B CAHBTI R ) TH I & ) B RE RN 32 Bt K
FE R SIS (Fukushima, 1976; McHenry and
Clauer, 1987) . %5 B RE iSO X HLER 2% 70 B
SIS RN, G A TR RN - M TR 37 I gk
ITHE SO B AR R A2, TR MR LR B A
B Z % EFTA ) =& (Fukushima, 1976),
A EE T 1 2 ) A 2 AL
FI R0 B ' F B R A AR P A SRR TV
— MO IR (line current, LC) i %, B—F
HNERLEEA W R4 (spherical elementary current
systems, SECS) [ 8 V2. £k HL I [ I8 77 2 fwe i 1
Olsen (1996) #i. T A TR & I 2 545,
T RZOTVERE T ARIX G 2 i 8 = PR TV A
T . D7V E KA KT R R
A AT T Er EA T, HAEBRSZE R
(RAE D9 110 km) AF4E TEPR KT B HLL, 1%
REE AT DR SIE I ERR PUEHHEEZ 1°)
HEPAE WL EL FE 07 10). 207V s = B 1 6c s,
FL UL ST ) B AR A S B
' kCOSIy +mpisind,
5F, = ’;—f : finZ,: i
Mk = 1esin( B, — By)
énk =Tn =108 (B, — Br)
Fort, o =dm 107775, L RIS, O B) AL
MAELE, (e B)REHBIALE, muxs Ensx 730U
bRV A SIS A T A= A Rl T N o S
B~ B o3 Al RN f AN 2 B BRI PUE A (R
Wi . B EaRnT I F, 5 i N MR R, HRYE
/D ZAReTEAR

(18)

d=Gm (19)
dEdF, (n=1,.., N) B EE, mij (k=
L., M) WL, G N<M fiisE
FRE. LC J7 ik Ja R B H T 5 A R Hd, BLEE
Magsat ( Olsen, 1996) . POGO ( Olsen et al.,
2002) . CHAMP C( Ritter et al., 2003, 2004) LA K&
Swarm (Aakjaer et al., 2016) .

BeAh, Amm (1997) $2HH 7 —Fh 3k T BRii 5
AHGLFR G (SECS) HiJ7ik, HH T4 i 37
WA E BB 2SRRI e g, IRt —F
UESEAZITVE TR T AR Ge vt 57 b U T AT 1)

Fr. (Amm and Viljanen, 1999) . Juusola %5 (2006,
2007) $hJE T —4E SECS Fik, A3 H W] DL 5
A TR 5 R 5 RO IX KT FL R AT 7 [ LA
SECS 8 J7 V2 () e A% R B 2 4 R B o — A
LB e Ccurl free, CE) 5 8 3
(divergence free, DF) J:pfi %, FHH/KFILH =
A TE/RBIRE R, KFIohesr B Y Tk
AR, e LB AR HE K PTG 23 & B EEE
T 7€ . 7€ SECS J7iEHr, & SeH H WL B A € FL I
FERLHIA T, RE4 2 ok B A B R
AR, B a5 R UGG A R R AT LR
RN AE. BRT AR, % T SECS 77
FEREESAEX BENH, AR 25 Amm
A1 Viljanen (1999) % Juusola % (2006, 2007) .
A B, 3R LC 1 SECS &isEkIX #
B ITEAAAE —E R PR Y. Lo, LC Jrikd
KRR 28R, BB B IRIR LS AR VG )
W, WA 7 B IR ] ReAFAE A B R R I S (A4
A, PRI JCIEAR G R AE FRIAL R 2% 1) 25 [ AFAIE. SECS
TERE A R PR R S A 4, HFEKR
HIEER S, R E e IR IR R & 7K
-2 1) FLUAE () SR AR 20 P 2 A (H H b R & il e LA
L —J UL R R U S A PR, ALt R
A AT, B E S E LR R E D
RFAEE AR R R &, LB RN A i %
PEAR AN € . A, SECS iR A R 20
MR, S EE SR

3.5 HREXFpEER

W2 [X 37 ] FELIAE A o 26 P B9 )2 5 2 2 TR o
NN, ZRZEFRE. it shRkmE
HEENETRREL —, EHZ-HEEME T
Vo B LA . A X 3 1) H IR B L E AR A EE A
FAH7E 2% (Birkeland) 7E 1908 E42 H1 ). £ S256 1,
T 258 “HHMSTZ” ClFd) S — itk
Bk, ROLHETHERRRNERI X, 7R IX 2R
JZ U B AL KA R A T 22 K %I R
iR RE D 2 () FEORE T 1T DAVR 3 MR 3z b ) 2% 07 Tm) gt
ANFEERA, PG, R RS i 2 5l
M X WP, B0 3.4 TR, Bt X R AR
FELIAL 51 RS ) b TR RE P 315 37 1) LA 5 |62 1 b T 4
B AH RN, {EHb IR TE ik B R 3 1) B R AT
&, FOCT 3 1n) 2 1 1 SEAFTE I S R
T 50 24, b H BN E A Sputnik & T,



EseE H1M
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NEHFANRZRG, HaBisd TEE T A
1963-38C [WREZ MM FTIESL (Zmuda et al., 1966) .
2 J& lijima fl Potemra (1976) 24 Triad T2 Hids
IS 21 1 R REE W 0] H, 7 I 46 R 7 st L Y
oAl AR, R BERERTRE, KB X
FH X5 1 2 2 18] B AR AR . A6 = B b 5 I X A7
PRI R R FAC (ANl 7a i), Sk
M HE G N 1 X (Region 1, R1) FAC, 7& /=M
MAHEEZE, EEMRHBEE; SEREMmER
JGAN 2 [X (Region 2, R2) FAC, Jilil5 R1 FAC A
2. R1 FAC #2116 = TG e (X 35, R2 FAC
5t ARSI E I OG, T NRER
R HL 3R X 8 ( Sato and lijima, 1979) . Imajo %
(2018) F| FH#: 5 Arase &2 M1 HL B 2 AMPERE
PEBATHFEDI,  MOWI FAESE T R2 0a) R
K H P Z R X

A AR A SR B, AN X 37 R H R
AR 7] BLag FL 7 B3 B 1. Arnoldy 5§ (1974)
RIS 772677 7] _E 1 FE - U R LE 3 ) FRL TR ) 28k
A EEREENE, ZFERFR IR T H
MBS R FUTEAE B TINECR, KEBZRI0T
B FEL -2 3 1) FLARIAC N LS J2 TP ) 484K (Lidhr
et al., 2004b; Watermann et al., 2009) . {H Xiong %5
(2020) FH DMSP T 12 i 37 FT B ki - 1) [8) s
M K IR R BE FAC WAE 5 TR FE 1/ T Re =
MEEFTEG R R mZE, HFP5 11X FACH
ZEROR, HAER WM LLA 71k 2 2.0°40 3.5°.
ZEE RGN T X PR T A & KR FAC M
— R

I W) FELIAL 1) S 08 B R FH B 3R I,

By 200

15 . 09
< 600 150

100

: 50
:4 1 06 0

FAC/(nA-m™)

=50

—-100

21\" ‘ R 4 ’/03 —150

S -200
00

AR JFH AR R T T 2R e, iR j 5H7AER
JEN Y B B H9< 20 LR IR A

VXB =uoj (20)
Horr, uo NEFPS R, B THOEXEE 1481
FRIEE T /KW, ] BRI W59, R
MR I IR, A (200 BIvJ{LiEA:

| (0B, 0B,

%(ﬁ;_ay)
TEFET B P ETFEMW X g m ey, HResRE
T EYIE E AR R 5, IX )
FT—E w3 — 5% E A1 N (Lihr et al.,
1996):

J: = (21)

1 AB,
Ho VAL
Horr, BT FL T3 1a] LI 87K 1 1T P 2% 1 O
Yy, vie DETWUTHEZ, HRSHERAER, Ak
AH I B A 22 [ R ) 22

A (22) REETLUF I EZRERRAA R
C1) AR X 37y 1) B 70 B LR o B K (2D
ZHIMAEERE (B THAEARRARE, JF
HinlE BT TR AT T (3) fETE KL
LU DA RN T P, FELRE HE R AS B, 0 N T 37
A Ak L H HL A I 7 R AR A BT SRR Y (R S bR B
X e AR R T RE I AN BE R 36 A2 . 0 SR e g R FH 22 8
PREFN . 2 GBI, wT DL 22 830 8% 8 H A5
BRI — P& [l BRI AR 23, AT AT DAAE R 55
BTz A A B A E A, 0 s

J: = (22)

. 1
j=—¢B-ai (23)
HoA
b
(b) - 1
- 200
15 09
, R . 150
GV e AN 100
A N 50 o
. 7 an\ N 3
B T 1 RETE
,“ \ \\\\—/‘// I/' /”r D
A\ ‘/,«/ 50 Z
100
21\ A e ’,' ,03 -150
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Fig. 7 Distribution of Region 1 and Region 2 field-aligned currents, the positive and negative values represent currents flow into and

out the ionosphere, respectively
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He, dDRAEGRBE LMY BT, ARBE
ARG, R A i) () P 3 BT A
A PR AR T B F R 25 B S 2 4H. P Swarm TR AL
) (AN 2a i), Swarm A Al C TLETE 460 km
P IR HE AT, TR AR TE BT B VR 4 B T 1) TR B
1.4°, 43 S 5 N LI L 1) g8 AR ) ) e ) B A 1
I EAE, XAFIREGE 7 A A s PR S A TR
U (A BE RS A Y, whe] DA R — AN AR Y i
TERE, WEAM TS EfE, HFHEATE
Xof HL A5 A AT AR RS BRTH E R
e R B o
k=z%ﬂ@m+3mwh+@m+%ﬁdr
(Bus + Buy)dlz = (By,, + By, )dl4] (24)

A (22) F1 (24) WLLEH, TEEET R
AU L, A g i A AR 2 B0 1 R b
WA 25 AR Ak, AN 321 W R TE AR
W Sq VL. MHEMEZI R, JmikT
FR LI S ) F 2 SR AT AR 22 32 2 iR YR,
FLL I s2 0. (B A48 (2 R FH Swarm B ATXUR
IHERPBREEAR R LWER, BENHER
W 2 LU AU R 25 JRE 22N, X2 R TE L R I /T
ARG T B, rETTER (Wang et al., 2023; Xiong
etal,2023) . [ FERE/RE b, AR 52 S H
B 243 W) B IR A T RE 22 52 B AR T HL AR IR I S R
(Wang et al., 2023) .

Dunlop %% (1988) #& i T F|H ¥k %% &) Cluster
AR R TR e ] B AR SR B v TR L )
i, HEZEEEMF A Swarm XU I8 B ZE 42
Iv) FEL O PR SEL B — 0. X T = s BT L R T PR B A
Kl 8a i, vl (21) AIE B HUEA:

1
j=2— [(B1+B2)-1(Q1,02) + (B2 + B3)-
oA

[(Q2,03)+ (B3 +B1)-1(03,01)] (25)

Heh, B, R RMWHIARE, 1(Qn On) i EHE
On M QI RIHIBRAR K RE, AR 4 HITHE AT

1
A= S llax by (26)

He, 1AL = AR R, BRI RR
EH T AR ER PR E SR, Bl
(07 B AR A T = M FE O AL, G SRAE =S a] f Y
AN 05 L TR B B R R R, IR RE ] LU R = AN
Kl 8b FTon it = M, kil LL1G BI7E =AML
Tl BRI, T IR 8 R IR R R

(@

Q

K8 (a) ET=ML=ASHH N R OEEET =
Y P15 30 7 28 R R FE R =R (b) A
Swarm 2 J8 15 =AMLy ) R HIR S E (5 A
Dunlop, 2015)

Fig. 8 (a) Schematic diagram of average current density inver-
sion that perpendicular to the triangle close loop based
on magnetic measurements at the three points of trian-
gle; (b) Schematic diagram of current vector inversion
based on magnetic measurements from Swarm constel-
lation (from Dunlop, 2015)

(Dunlop and Balogh, 2005; Zhao et al., 2016) .
3.6 HEHBERER

FECL BN o, A TR R R
(LR SRS F B R IR, (SR PR H B R R A —
MEIRO RS, E0 - HE W, X N ) 20 AL
THEE F 255 U i n LA 41

BMEBEEEMRESEEARTEM. HiE)E
KBRAESHH R, TERHEEZE D ERNEERNEAR
FAAE. T D JE AL i m FEVE A It R R,
HEE SRS, WEDEHETHENEHRNEE
G, HRZEAWE N THEEEERU, FEH
TORPBAEEST R, B R T E RS TR, &
FREMK, EEHEERBREERIS. 52T
RAEHBZEF BE&E, BT RSl B
HERM, REKEBTHEAT N HBEM
6] F EAAAAE R Z T AIES T, W] DAREHI.

RSB E F 2, BB 7S T i
MM EEMEH AR, PR, B FET
TR J1B6E 714 (Alken et al., 2011, 2017) . %6,
TEF JZEE, BT iR BS 1 1R[] AR 2 K T Al it
W, A I EERTS, BT
M ExBIERIES), ERKEE 577 M5 e Jo
K, BB THEA LMD R E—RiEs, A
AR, FK, BT B OROKBRAR S Atk =
FE 18] B TH RS2 AR, TR R RZE K, A
A g AN AR TE], A AR XURH b 1% 7 1) 34 R 4R
HTF, P4 F BERBIN, JFERMRF ER B
7 (Fejer, 2011; Heelis, 2004; Richmond, 1979; Rish-
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REGEE, &5 P FARAUIE TR SO fe 36 L 8 )2 FLR AR <61

beth, 1971a, 1971b) . H4h, 55T S HE 2
X F Za kb Fis s — AN, HIREhT
HR AT R8N ja = (BxVP)/B*, i B NJH I
Wi k&, HSRIEAN B: P =nk(Ti+Te) N5 B 11k
T3, kK RBIRREER, n NEBSTHRERE, T
AT oy AR NS T H TR, &8 TR b6
XSy 1 R I [ B T D L3 R 55 8 Ak e
[, HE5%E P REEMEEZEDIME (B9 .
wJE, BRI FE RSN Bk E 3 1
HERNKX B THTFHREZ N TETFRE, £2
WS R T, HOWKSI R AT R R R
Jo=nmi(gxB)/B*, M, n NETHERE, mH
SRR, g NESMEEE, BN R
&) LEE ) IR S Y R S B G T
77 1m) (R B 2 L 2 AN B s, 7R R
BN F JRREGX, HEREM AT E, AR
IF1] FLYAT.

F JZ B A7 AE ©0k 2 U ELTE T8 1) Hh i 0
W ATIESE Ce.g. Liihr et al., 2016; Maeda et al., 1982;
Maus and Liihr, 2006) . CHAMP F1 Swarm %51 1
T8 R MBI B SR F 2 IR Go it REIE
Pt T W] 5 A $HE . Shore 25 (2013) F| ] Grsted
A CHAMP T2 W i b il sm 508, A58 T 400~
700 km 8] 26 [n) B 2 B AT RO 7 45 SRR B TE

(b)

R VG £ A R BN T 0.1 pA/m®, (H
AT ) 5 S S 7R 8 1) R IR AE 25 1) ) 43 A AR 43 H
Tozzi % (2015) F| A Swarm & K 2014 4F 3 H
FI 9 F A TR £ 2 4 1 Hh w0 I B, B AT R BN
500 km =1 5 B 3 (1 SF- 28 26 1) HELUR 1R F 30 5 BE 40 N
10 nA/m?, 4%J5 (01—05 LT) & fa) HL i i) 7 2
ZREER /N, 2159 5 nA/m> Lihr 2 (2016) F) H
Swarm S JFEZ) 4 AN H RIS, AR 2255 58
I, T T Swarm BUE & B4 ) L. At
IR P 4E SRR, RIE] F 245 i 3 ZoA 7 )
HL, HEEELZIN 10 nA/m?. b4k, 7ER R 5
i A L TS A T 2 = b S 1 e (K R (Wi
BT A T LA A BRI TR ES 2. Zhou 25 (2020)
F) I CHAMP L & 2001—2009 4F Hb f W I % 95
(100, Z0#r THARS X F 246 1) IR I RRE,
WARGERKHBE G, KA/REMIE F Z4m
TONZRI R, PIERE T8 REh, 4 s
. T, AR HIRTE AL EER P A L. &
KENT BRI R EX R, WES
TR A FRAE s, AT UH R T AR 1) KU
YER. BT 7> & SPWI1 A1 DO (3L EER, F 2
il IR BE A AL BRI 1 A, TEREER R
AR, ARERE LG A FL

OB IR 7 A2 T2 B RO HE NG TR IRy

Ko (a) af Rk EE A MR 0L (o) NSRS 7 ik Ik /o6 B R i R G- BB (51 H Alken et al.,

2017

Fig. 9 (a) Trajectories of charged particles in gravitational and magnetic fields; (b) Schematic diagram of the plasma pressure gradi-

ent driven currents on the dayside (from Alken et al., 2017)
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Fig. 10 Schematic diagram of the nightside ionospheric zonal
currents, the red and blue arrows represent the F region
current and EEJ, respectively (from Zhou et al., 2020)

Wi 51 sl I R, I UFHE S &
Wi3s, T 51 SR I, IXFR RN B R
EETRIPTREZUN. (diamagnetic effect of plasma) .
INTE 5 B TR — R R I I D 8 0 Al () 55 55 1A
FEEWAETERES, ZEEENNES T RE
FEEETHABRET OB FEE. mE 11 R,
No Ny 43 3R A [R) 1 56 58 71 2% B X e, o
No NE B FHFES XS, #3710 W I E 4K
A B RGN T, Ny XS 155 8 R &
FEAR I A TT M LR, T N DX A R
FEEI/NT Ny X3, AT LA Ny XK A H e
WA AR Ny XK e T, SRR A A e
LIRS BRI, TAE Ny AN, Xk 20 i B
23 7 A P B 7 RS 4t 1) ) AL A IR 4 F
WA AR 2 51 Ny DX 3B i 2 B 4% 1 1) 3L 1
Wi, ZHESS o BRI . Rk B 11 ELAC
T 17 FL I 30 8 A 7R T8 7 KPR 1R B S S
Y1, Ny 1Ny X385 AR H BIURE 25 1 45 B8 11k A
HREETR, BAn DR HESE FAEEE o
HIEETH ST M BImAEAE, %Rl
5 B VL N P AT T SR O 18 W35 oy
45,

Lithr & (2003) f5 MRS KGN T, &
W IBREAK K, HETK I 7] LZREAS T, A
SRR B n—EEl, WA ESES
TSRS RPHTT, WEHSEN, RZAEES
FAR BN T, B B R R AR A
e RS B AR BB A, JRdE—2b
S TP EZE TR, A (27) Bk

k

TBENn@ T

Jj= @7
KA QD RBUREEF R, TMT 5 &
THE TR, BANK, niE TEE, B
Nm?, BREWEIGREL, AN nT. N T HER T

(2)

KNy

(©) J

n, n,

n>n, n>ny

Bl (a) HHZEE T BOm RN 78 55 58 1R 43 LT 722 A2
M sEE (5l HRERB, 2012); (b, o) ARIEZE
B RS EMPE ER (K—E)D (5] H Kel-
ley, 1989)

Fig. 11 (a) Schematic diagram of the diamagnetic currents
induced at the interface with different plasma density
(from Xiong, 2012); (b, c¢) The diamagnetic current
flowing at the wall of equatorial plasma bubble (from
Kelley, 1989)
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TR R _E T DA B R AR . P& 11b,
Llc W45 T AT REAFTE I 7R T8 55 55 1~ A e 1l i )
e AR 5 B I EE RSl I H .
TR E T A F, FEFAR RN
ARANKE G R R, Al (28) FiR:
(B-b)*
MO
O, o e B ARG, b B LRI P 2 1
Wi, CJ—REH B, T 78T 4 A RS L
SEETHES =N ES, T AK (28)
WA

+nk(Ti+Te)=C (28)

b—B =nk(T;+Te) (29)
Mo

brimms X & BRI IR %S AV RE AL A ZIVSE

b= nk (T +Te) ‘% (30)

(EASR R AN A4 ) LR i B R 0
FERINSELSS, Bl S A 3755 B AL 8 £E£10 nT,
F2/NT 1 nT. BIRIX L 0 #3722 A0 B TR
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