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Abstract: The geomagnetic field is a natural barrier to protect the Earth and maintain the stability of the
Earth's environment, and is widely used in various fields as an important strategic resource. Many studies indicated
that the changes in the geomagnetic field have intensified in recent years. This study uses the 13th generation of the
International Geomagnetic Reference Field model (IGRF-13) to investigate the long-term changes in the Earth's
main magnetic field from 1900 to 2020 and analyzes the evolution of the South Atlantic Anomaly (SAA). The re-
sults show that, the main magnetic field exhibits an increasing trend in the Eastern Hemisphere, while its variations
in the Western Hemisphere are more diverse. The Earth's dipole moment is decreasing while the non-dipole mo-
ment is increasing in the last 120 years, which means the contribution from dipole (non-dipole) field is decreasing
(increasing). The average westward drifting speed of the main field is 0.2°/a since 1900, with the anomaly field ex-

hibiting a predominant westward drift direction, complemented by a modest north-south oscillation. In the horizont-
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al direction, the focuses of the main magnetic field gradient anomalies exhibit a slow variation in the Northern
Hemisphere, whereas in the Southern Hemisphere, they demonstrate a more rapid westward drift accompanied by a
slight north-south oscillation. Since around 1930, when the African anomaly formed, the zero contours of the lati-
tudinal gradient in Africa and the South Atlantic have shifted southward and westward rapidly. The magnetic poles
change more rapidly relative to the geomagnetic poles, and the direction and speed of movement differ in the
Northern and Southern Hemispheres: in the Northern Hemisphere, the magnetic poles have crossed from the West-
ern Hemisphere to the Eastern Hemisphere, while in the Southern Hemisphere, the poles have moved toward lower
latitudes. The SAA represents the weakest region of the Earth's main magnetic field, and a comparison between its
western primary minimum and the eastern secondary minimum, which emerged in 2007, reveals a notable low
value of approximately 10’ nT. Although the magnetic field strength in the SAA region exhibits an overall declin-
ing trend, the discrepancy between the primary and secondary minima has been progressively diminishing annually.
Furthermore, the primary minimum center has demonstrated a general southwestward drift trajectory over the past
120 years, while the secondary minimum center has exhibited an eastward shift with a subtle north-south oscilla-
tion since 2007.

Keywords: geomagnetic field; main field long-term variation; IGRF-13 model; South Atlantic Anomaly
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Fig. 1 Variations of the total strength of the main magnetic field every 30 years from 1900 to 2020
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