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Abstract: Jupiter is the biggest and fastest-rotating planet in our solar system. As a gas giant without land—sea
distribution or topography, Jupiter is an ideal natural laboratory for studying atmospheric dynamics. Jupiter's atmo-
spheric composition, atmospheric circulation, and internal structure are all topics of scientific significance. On
December 4, 1973, Pioneer 10 achieved its closest approach to Jupiter, marking the first successful exploration mis-
sion to the Jovian system. Since then, Jupiter exploration has gathered more than 50 years of experience with 10
missions, including 7 flyby missions, 2 orbiting missions, Galileo and Juno, and the still en route mission Jupiter
Icy moons Explorer (JUICE). This review takes a brief look-back to these 10 Jupiter missions and their science re-
sults, especially the progress on Jupiter's atmospheric composition, waves and zonal jet streams, the Great Red
Spot, and polar vortices, as well as the unsolved scientific problems. China plans to launch Tianwen-4 by 2030, tar-
geting the Jovian system. To shed some light on the scientific payloads and target design of Tianwen-4, reviewing
the past Jupiter missions has certain significance.
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AR B XS T b 2 AR B SR AN RE AR R E
(IR0 Py SRR A, AR BAE N FH & s R
FEEHER S VD AT B, IR Rt s B = A
FRE, fECFA Rl g RE KRS A,
BN BEAAERTT, HAATHARITTEAR, HIHERRHN
ARE. FENFESIEN (il REB) hRgE “%
H. AZATURES B, FIARTAR, £H”, U
B RAEP TR0, AR T R R ITAT IS,
HHOAMABLUKEMABKAZSE R, WIAER
AT FIAT. RENBIRZ, kiR, BEE, BA,
LA (A EZEME) h “DHETFRE, HAY
B, GRZEWE, MEAeTE”, BATRITHRARER
R (B, HRAIRER A, T ARIR
BRA T ZHFEGR R, KR sEIE 5 -+ =5
gy, fECEEAN Bk RS RAFE SR —F T
TAE, R T, (EEEF) R
CORMILVE, BAEZHT, RS B A skl
A ).

1610 4F, finFIws A B S fE ) =5 B 5
WA E, KT AR AV TR, XD
BRIy g TR, e R ATEENRIAR
T—fHE (lo). KT ZBEKFE (Europa). AL
=i Je K18 (Ganymede). A TUY-RFHHE (Cal-
listo), ANILABATA A0 5 R A8 E R AR S A
LR ). 5 B e R e I B B TR 2 5
AN, WASZ A R 7 X PR B R T2 PR
TEFIEEARRII. HERE R A4S,
2023) . ART—P4240 1822 km, KT HER K
TR 2D 400 FEG KL, SERBHR S H
G BN E ) R 4K (Anderson et al., 2001) . KL
TRV R R R RN, R TR R G vk T
waw, AEE-TH, RA—SERirafsg, XZEK
i MR AT REAF I WA G = fTE 3=, 2013,
McKinnon et al., 2009) . A T =& KPH & AR
JRER KM TR, F14% 2631 km, £ HBEKEREM
1.5 5. WEFCHEN, AT =& ] BEAAE KBRS K
(Vance et al., 2014) . K EPYZPIB B EFE K
1), B RLAEKEMMY, (H% R E ) nig
JE 2 DU T /N L A T DY R R T A e o b 7
7, X e T T A S R A T DY 5T v A4 Y S A
=, EARTN EMIMABUEIRIGEE) . KILES)
S5t P FR RS B (Greeley et al., 2000) .

ARTEVURE 10 km P EZ RS2 KIK (K 2 A
Mg, 2021), HHF 100 km Ak 7] G877 75 A K
(Kuskov and Kronrod, 2005) .

1660 FHI G, BMAFEEF XK. RLFEFIFN
Je-£7PiJE (Giovanni Cassini) KT AKERMEH
R FE R FIBE s, TR 2 . At AR 4 W
WSE TR BRI I, 3 BRI B [F 26 B
0 T2 e A S FE SR AN TR . FE B IS 1 9 A et a0 B
R F AR BIREIE AT AR BESE3E4T T 3R
TESS IR

1932 4, EERCFEREAFRE BURFE (Rupert
Wildt) 7EAE a1 R BLT H e FH 2SRy
( Dunham, 1933; Wildt, 1937), A& K0 M F B
MRS B AT W _E T B 5% 1 4> #r . Burke A1
Franklin (1955) WL B 5k B, RILAR R
bl B % 2 A U R 5 22.2 MHz 1+ 2K 3K,
Shain (1956) 7 L ml b F) FH -+ K38 5 A #1155
ITIE T AR B 5 8

HiyF UL AE 28 S BOE AR AR, Hi 3R K0S
RIS S, S B ISR A AR B 5
TERAINB IR B, 1968 4, AR — RS HEITh
“BHIERILEH” (Orbiting Astronomical Observatory,
OAO-2) KIWKEF, £ 1968 & 1971 4E[A13R4F T I
BUAE 2100~3400 A, 2 #2305 25 AR B,
RILA B ) S R AE 2500 Aik #)0& {8 ( Moore,
1981) . OAO-2 i WL 1 PR Fleg e, KINE
0 R R AE R P B T, JR e LA
T I B R ) R 55 1Y Bl (Butterworth,
1981) .

A B 5 0t 7 B R R
(197K =F B AT DA A B T AT 1 B, s K B
RKREWK M SRR EER R, 1T B
BT, 5K BH R 22 5 S0 5 10 K BH A B K &
A, e B K BH AL B S K B, 1K PH R S
2 SR K BRI b 77 5 B e m KO AT R
R BRI A KA K F B A B AT — 253
R A R R OK B AR PR T RS . AR (RS
B K37 P E -5 2 e e X K S
WA e, KA FEEHIER T EAT 2R
(BB AIF 78 B A 5 S0 DA b R 1) ) e
AT SR ASE RN B3 0T P 8 o R, R b R SR
RIER TN EEL. 1972 4F, SRk 10 5 KA A,
TR T AT HRRNA B R e, H it & sIh &
BT 10 RREATS, B35 7 K AT A wg
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FHRESWIRIAGUES . IEAE TR AR RIK
PEHENIES.

1 AREBRNATESS [

1.1 1972 & %£IRE 10 5

SO 10 5 (Pioneer 10) 235 EE R =M
KJF (NASA) FE—1KUi4MTE  (outer planets)
f)RATHS, KR 258 kg, T 197243 H3HXK
B, FFE 1973 4E 12 A 4 H kBUREIR# A, BE
KEZTIZ) 1.3x10° km. SeIKFE 10 5 7E4T 55 B H) 61
T2 7 RS AT LR KB Rk
NEPRZEE AT B— Rk EuERE

1 RAT A BRI MT R ATH: B
MREARER T H— N CHBEERIER K
1748 BN KB T4 (Hall, 1983; Sid-
diqi, 2018) .

JIRAE 10 SIEFEE 11 MR (LR D,
WA BE 33 kg, IIFE 24 W (Hall, 1974), H
6 ME A R RS TE (Siddigi, 2018) . SE3K
H 10 FRKAR T ALY, AE=, AT MK
Frs ABFEHRIE AR P — s, R AR AL i & e 5
MER A KIARZ G, LIKHE 10 S5EKER
B 26T AT O 46 2 5050 . thah, BE R AL Ak
MRS T RE R AUE B

JeIRFH 10 578 19724 11 H 6 HZE 12 H 31
H W E Fa 8% 17 K40 500 FkA B RSB fr. X e i

®1 BRREES B

Table 1 Instruments on spacecrafts of major Jovian missions
1972 1973 1977 1989 2011 2023
JWFE | o .
SeIRE 105 s TRATHE 15 | RiT &2 A g Kifs R VK TR AR IR
PacnERlbings @S 1 (= Bt410 nm, 678
(OBLE, 1 :390~490 nm, £15(:580~700 nm) nm, 945 nm) SR RS
A LG
I E [ 25 BUZAR Ri#EHHL(JunoCam) | (375~1100 nm)
(AT ILoE) (375~1100 nm) (AT IL'%)
o LLAMT IR o
. LLAMR ST UELT AN AN LIAMEEBURIX RES i
1AM (0.3~2.0 um, 2.5~50
(14~25 pm, 19~56 pm) ) (700~5200 nm) (2000~5000 nm) (400~5700 nm)
pm
ISR SR IR T IR
seshis - . (B SEAME(113~432 nm) " .
(17~140 nm) (40~180 nm) (68~210 nm) (55~210 nm)
EVS {4l Wi (MAG) KRR (MAG) g (J-MAG)
i3 DN
Bt
- o 1T RS RSO 8: o L
i B FRAR ARSI X - Desz et inge 2K B
TR RS
TG
AR TR e BERL-H
. — fIRBRT HI LT SE 56
R SR HE I
FRT ORI 5 B TR AR T RIS
DU I 55 15 1A BT A
ERTWTRS TCLk HL /55 B I A
TR ASRIAL
UTNEEREN VEVE BRI T ALY BRI+ R 5 AP IR
T AR
o HN&ITE
) HAORERG
L/ BEEEN
] = AT =Hot s
B w5
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F B B v A A4y B R 320 km, X HEOR R R R
6.99x10* km, 73 2 A 2 I K2 218%218 1%
%, L 360p MIARATIL ZATH.

SRR, B —ANBRIR R ARSI 91 K R
WA AN, IRE 10 55K T A BEE H b
1976 42 A, ik 10 5 W EPIE, dRE
PRRARRIHRKRAE 8L T KK, Z a2k
10 5S4k sk ) K S IR AL /AT, REFE CERIEN
NI RAT BRI IE . XA A 1998 52 H 17 H
WoikiT 1 ST

2003 41 23 H, ZEHKE 10 54 1223 14T
KAMFHER R B T i 5 155, g KR RIEZE
I 23R,

1.2 1973 F: %£RE 115

eIk 115 (Pioneer 11) Z26IKE 10 51y
Uik kATRE, T 19734 4 H 6 HARS, BRE
NMEEARER TS, HWEFE - WE AN T
LR FE N SHREE T 2R A I
# 1), Bl #ELA 30 ke, ThFE AN 25 W (Hall,
1983) .

eIk 11 5 AT IE F /N ) A W (Siddiq,
2018): JHUR P [RI o7 22 A0 FEL LT B 14 ) Bl R . %
AT G A NS . NT B ARSI %5 0 K
R AERERLR, A GRMES

1974 4 7 AHA], JBIR#E 11 52T G %
NMT A, BEEHT — B, DA JRTRE 10
SR AR AR E AR, SRk 11 SRR AR
= IR B FE B N 4.25%104 km, B IXIAR T KE
LR F, FF4R38 T 200 KA R B2 IR A

SR 11 SR HAREM G| 158 5 N 8w
B, 1979 F9H 1 H, ERANE—NTERHELER
KATHE (Hall, 1983) . ZJ5, &WE 11 52K
FEEEM SRS, RO R RLZ 2 R K BE R
M mA T (Wolfe et al., 1980) .

IE 1 SRR 405k B E, mk
UKE 10 SAHRM TR 2. 1995429 H 30 H, %
IR 11 SEFEHIER 44.1 AU 2 3% 53R4T T &
Ja— VG, 1995 4F 11 H 24 H, Hufi ks 7k
HERE 11 S KMER TEEE, ZFME
G E W, FJEIKE 10 5—F, Jaikss 11 S5
T YO RERR B AE VRN IS B AR, A R
WA E AT, EAVUE GG, B O R

1.3 19775 9A: ikKIT&E15S

AT #FH 15 (Voyager 1) MEAT & 25
(Voyager 2) 72 [F1E 1977 & 3 224 K AT 4% .
WATH 15T 19774 9 A s H RS, ®iT#HE
721.9 kg, /& NASA [ iR feizs . i )i i
fE55. RATH 1 S T 11RO
KD RITHE 1S REEESETRITE 25, H
RCAEEEE, RATH 1 575 1977 4F 12 H 15
HeFikiT# 2 S5 7 /M7 B

1978 £ 4 A, JRiT#H 1 SHHE AR 1.77 AU,
TG T eSS RITE 1 57E 1979 4F 1 Hik
[ B RN, R B IR A IR AR BT 1973—
1974 F5603E 10 5. 11 5 S A oA K. B
1979 4 1 H 30 Hild, WRAT#H 1 SR 96 s —Mi,
FFE: 100 /N RERS B 5, BAMME &R T KR
10 ™ H 4% J5 1.

1979 3 H 5 H, RATH 15 RIMAER,
FEAE 2T 2.8x10° km. JRAT#H 15 KHEARE M
L, 76 W LR N R T AR B WHE,
HSE T AR TR L

AT 15 WK E JG, MR R T R
RN (Amalthea). RE—. KRE=., KIE=,
ARTPU. jigdr 3 15 [F LA b T Sl i AR R L
2L ATA, R AR EREAR TR B A,
fR3E TAT R AUR I K . IRATH 1 SR T
KT — EAA7EK1iE3) (Strom et al., 1981), & F
BRART—RmMEDH 8 MEKIl, ZKHRF K
L6 B B AR ) R AR 2 — . BFEFAA I
s AR T kil i Bh 1 3 R & R YR ( Yoder,
1979) . KRE—HIBA G ETNEG., HE. &5
ta, g kK mER I AR S B, B4k,
AT 1 538 ORI T ARE B, I H KT
PR LA . AR ADYKFHE (Thebe) AIAR LEA75
R (Metis) .

BEJs, 719794 HOH, RITH 1 5%
PIIRAS N, DLA e Wi B i 5 4 TS A . iRkAT
H1SRIT LB —G W, BRIT
TERSPTEAE.

1990 £ 2 H 14 H, JRATH 1 5 4E8E & KA
40 AU #MFFANLIEIEERFH R, RN E &%
T 645k, HoiA A — kR R R BEAR
PAZ T K W e (G VR U 2 ) (Pale Blue Dot),
XAk IR A RRE “ KBHR AR . 12,



EseE H1M

RO, 55 BRI —a SRR SR 50 4F «71

TR AN 4 B DR O BE B K BE R T a4 3%, K EAE
HB A R TR I YR P 1 BH T

1979 4 4 H, JiRATH 1564 7ML, A
ToREIEPRRAT A REIR. 1998 4F 2 A 17 H, ik
7% 1 SIS KM 69.4 AU, FTHEZEIRE 10 51
03, N B RIS RO 1) AT AR 2012 4, RAT
FH15HATHE-NFBHIKE (heliosphere) 1)
AT, HRAERE 8 H K HERETI (heliopause) .
HERZ TR KFH R A5, £ HBRZETZ 4, K
PRS2 /N F-4R T KPR R R, iRAT 1
SR A G HKBH R RAT R

TRATH 1 582 SHERET — B AR A 30 em 1)
HEGIE F, PERUREE T 55 FiE S I A, HERAE
R 35 FPEHE L 90 min (VG /7 & K% 245 H,
AT 1 S EEERAIE D 162 AU, {HAKIHFI 3k
REFERCR. PR 14000 43 28000 4247, EA
A K BRRE 2.

14 19775 88: ik17&2 5

RATE 25T 1977 4 8 H 20 H RS, ®AT#
#H 7219 kg, #BETMIRAITE 1 SMHEREK 11 FE
SAYEE (LR 1; Siddigi, 2018) .

1979 4F 4 H 24 HilZ, iRITH 2 SHEX KRR
KA MBATIEN 5. 5RITHE 1| SAREE,
TRATH 2 SAE R RAAGEX PUBUR AT T
M. A B, AR — 1 klig sh i 7E RF 4
BT, HHRBRATH 15K U L o R
(Smith et al., 1979; Strom et al., 1981) . €47 #& 2
SN TIRATH 1 SHEEIA TR &80 2
EihEk bR vk RS 5%, P IRIRAT & AT 55 1)
P ES TR T AR DI R 3R, 6k
HER S km WA (Batson et al., 1980) .

1979 7 H 9 H, JRATH 2 5 RIARE T #
B BEEARE BTZ 5.7x10° km, KILT AR KL
B, TR ALE R, FEET TSN TR

T KA L R R R PUE R, RATH 1
SR KRR TR TR RITE 2 SN T X
—iE, BERE AR ER. BEEK T,
W2 HATME—— DR RHRNEBEATER K
1T 45

AT H 2 5 H AT B JATE D 136 AU, FR4F
o RS E T IR, AR R R 28 52 X HEHhER
2023 4E 7 H 21 H, JRITH 2 5 HIREw ek 20,
—REREK. 2023 4E 8 H 1 H, M RFE I RA e 2

THRATE 2 SHIMESES, MJEME 8 A 4 HRKIT
H 2 TR RIRITME, SERERIFEIRITE 2 SRR
FOB R BRI 2 18.5 /N A BIA iR AT
H 295 37/ E, IR A E SR A 25
HHBREC R, CHRTERS, 28 Bk
He.

1.5 1990 &: A FIFHEFS

JCF PG #r 5 (Ulysses) & NASA FlRK 25 J5)
(ESA) MIBEAAESS, T 19904 10 H 6 HHEHE
RIGHR CHIE RIS, 58— A i i i )
()73 [ AT R I R AR 55 (Siddigi, 2018) .

199242 H 8 H, JURIPEHT S KA E T #t
A, BEEKE BT 3.8x10° km, RONE HLANEE
ARERE AT, XX AR RN TR
BGI 7, M E R GO KB, A
BEIETH MG K BEAER (Billings, 2012) .

e ) 78 5 G A L R O A R A
2. URIP S I T KB s S, RIR
A2 1) BE T %) B 2 T v B K 20 K B AR 1Y) 105 £
(Balogh etal., 1992) . b4t EEIX 5 T WLZEH 1)
HFRARERAEAREREZ, KT 2 KX,
R T R F AR S FULAR G4 EHEX
Td 37 2% 1) v e HL 7 R 48 FEL B K (Smiith et al,,
1992) .

SR THEARER 17 R UTIE, LRI
R A KFHEE, JFT 2004 SE7EE H A E, FiK
TEEHOUL IR B . 2009 4F 6 H 30 H, JuRI i
S ERLFZER R, DIl 18.5 SRS i X% %

1.6 1989 ££: fIFIAZS

A 5T 1989 4F 10 A 18 H 1 4% 2% 3 W
SR CHIEE T =, B AN HGRIMT R AT
RATHE, R A AMT B RS BERE B )
17 %% AN 5 R PR 28 45 FTARE 1 358 2040 . Al ) s
SRR ILER T 10 MREEAS (LE D,
BT R 118 kg, MNAIE S HRE HAT 127 cm, &
91 cm, FE %) 331kg &N LR 22 H A7 3L 28 kg
(Givens et al., 1983), fUfF 6 NMEIACH: KA
SERIERMES . PHERGEAC. REETWAL HEE
AT MREETE. E HRAER TR W R A 7R AR
ABRRIE S, AR S B A 4 3 R R R TR
W, WAEETI A GG 5 R B TAE, SRR
R B KA S R TS T, AT 5% e i A ik B
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il (Siddiqi, 2018) .

AR 5 28 TSR R & H TR LIRS
A2 A B 2 T e E AT AR 1995 4 12 1, AR
WS RIEARE R, FFHBIATIES, B —IAES
23 AN HBIGEARE 11 8 €47, 10K CEARREE
BT NASA S45 7 NRES S 0+ RRHA R A
(D FIBAREHRN T AR BB RS 5r, RIFHA
X B KEAE, FTHERIARRERHEST
TR AL RS, (20 55— IRTEHAMT & 0
BT = . UK 2T 72 R SIRAL T B
EATEBE I = P AAAE. (3) KT—FREMIA
TSRS LLHER R M58 2 100 £5,  HKLmE& B4
FAZUE SR FIAGHLEPL (4 RE—KRAH
MES TR EERBRNES, TERERSHEE
PRI, (5) AR T UK R AR AR ) HE
WAL T MMLESE. (60 R T =25 — Ml kI
AHGH A, C7) AR ms R E R iE B A
B =0 WUEHABRSIKE. (8) UEHEER,
RIEZ, =, WA - ERERRR. (9 KER
HF R4 1 B S TR R T R B I DY S 4T TR
i et R BB AN IR LR A IRE
AT, (100 B IRAEEAT B HE)Z N AF B I (A 2
A DLEAT R B AR 1 5 R 3h J i R BB 7.

19954 7 H 12 H, A8 -5 B R g B2 &
R, BEBA 5| SR G HEESE, B SaRH
BERETBURET < BT R BLRS, DAAIRIRET AT LATE N
PHARAMIE . 19954 12 H7H, E&T 5SAMNAW
HH&EEZ G, e/ 17 5T K 03 EEA
WE R A KBRS, EERAKERZ
() Ffr 2252 [l B 240 N R BH 2R T FE TR A% 2 min /5,
PREFHT I 4 7 <o 0 o 1A

WHAEREZZH B T4 200 km, f&H T
KRS #oBgE. S, BE. KGR, WHELLK
KA MG B REFI AL 23 4E T 7% 58 min J5 ]
ERBER, A A RE A FIA 23 bar KA EAL,
AT S ESR A% (Young, 2003) . —/Ni )5, BB
BIARE T2 2x10° km (IINFIES 5 3 R LK,
BIHRRIBIERARESGHIE. 7N JE, RS
3 28 7 28 HE A PR R K, R S U B R ORI,
AT 28 AN B S R BT KA A JER A AT TSN it
FSC R 785 L J3

R B 5 PE AT 32 ZEAT 55 R EOR L= 3 0K

a) https://science.nasa.gov/mission/galileo/

AKL=4®. KB 3R, EARSEEZRITE 1
SR 2 5 1/1000 £ 1/100.

1997 4 12 H, AFIBE S IF 46 7 A 2 41 B
TS AR A T AT 5. R Bg 5 4L 8 K
AT, R TEZKRINER, ®5IkTE
FHRRT AR LUK T =2 B ARE R e,
FIREA B ARSI 2 K TR —, T
KRB — K& B s, thah, MAleg R 2 1%
ZIL RN KA T = 4 k. RIS T4 4T 55 ik
A 5 ANk S T —F, EHARE—MARTE=,
FHAE 2000 4F 12 HFI-RPEJES (Cassini) $ATERA
{155

finFng 5 76 T EHRZ IR ® . 15
FERH T OGH R XU Wit RES A LR AR A
AT ISR A G A sl e R e, B LUK B AN 5
—WE B SR, AR A R R E 0 7 ). A
WS XU 45 A T IX PRI T —ia Do
B3 LR LR, 5oy I e, DA EORAH
BN A AL 3% 35 BB 08 ORFF ] 2 S22 I Im) Jie 7 38 40
Be AT BERRA,  FHRAT LI . i 2R A eg =
(R REVR e BRI RS 75 HE - S 0 e i 50 73
b TR R 43 3 B o0 W WA A BRI AR
EAIHESAE 11 m KB mAF b, Dl RATH B F
TCaH R Nl 1 )

1.7 1997 %: KHES

RPUJE*S5 (Cassini) T 1997 4£ 10 H 15 H A
WX AT R B 2 S (Huygens) %% — R R 5T,
B IR IRAT 55 () 2R 9= 17 Je - 58 - (Cassini-Huy-
gens) . R SR —NHGE LB KR
HRERES, RS — A M ANAERE AT RFE AT
%. RS mEENFT IR EEARTAE, &
R 7 AT A B R R IR R, UESE T R TN
Z&I (Titan) _EAAAE DL BRI A BRI <% R 5
LA BT 28 F R T, SHbER B LOK
PEIR N ERAR 1S A R GE RS AKIFEERIALL, ABFFT
HBRVE A SR PR AE TR R (Siddiqi, 2018) .

20004 12 H30H, FAERSEHEBEAER
T2 9.7%10° km I/ B2 Kok, 7EIEAT 51 J74H Bl
(1 [ B Pl R R R A . 5 78 JE 5 34 T 26000
RIKARE R, H Ak () A28 B T3 7t
KERSFM=IAEKRSEM (Porco et al., 2003) .
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RO, 55 BRI —a SRR SR 50 4F ©73

flRsg 5 K2k

S R

FHTRERY
B T HHECR (7978
AR YREEN

Sl e R R

L: ERENS

T RSy

LN R A

TREF kR

O PE R 28 L
(dt 2 4b)

FUHTA ., A
- WIS

o SR AP
* UTLLAMN AL
* bR T

g =

B Rl ds KRS R E B (513 NASA/JPL-Caltech)
Fig. 1 A line drawing of the Galileo orbiter and instruments (from NASA/JPL-Caltech)

RUUJE 5 K ARER, (A 5 IEAEAEHUIE
B3GR, R SATR A LA H B a]), 1EP 4R
AT BRI FOR . BN, RS S AR
AR, R P JE 5 7E K BH R 3 S Al gk
AT, R LRI T K BH XY FRE - FIRE = (R A
HAEA (Hospodarsky et al., 2004) .

201749 H 15 H, RiueSEm A, 401
TE20 MRS, BRRE—Z], RIGJE T8N
Hh BRAL IR EAR.

1.8 2006 &£: FMEHS

HTALET 5 (New Horizons) T 2006 £ 1 H 19
H&ht, #478kg, (S HMREMAREEE AT
B DUBCRTARE A i H A R A, AR S5 Y T R SR
FH 30 AU % 50 AU (Siddiqi, 2018) .

2007 4 2 3 28 H, Bl 5 Gl R DLgEAT
105, AREBEAT 7O 4 AN H O, Wik
TARERR. ¥ Rg. AETENGEE. REN
bR AR a1 R L s T S S U X I I I N
P—. REZ, RE=RRER R, GFART—K
LR BTRR . BT ALY 5 X R B TR BT 1 ] I
HVET AN B UL . T L5 38 B W I &5 SR 2 1T,
AR T RMARR T HABK PR F, B 6 fwla)
T )[R BT S 1) 2 Ah b 2 ] T K
Wk, FFH 6 7 xR EA XA s B KRR
(Reuter et al., 2007) .

AR 51 748 E A B S o E & 14000 km/h,
FHAAEE EREMREER 7 3 4. 2019 45, #Hifl
5 R R, R TR S N PRAE,
b J5 # NASA fir %4 “ K% ” (Arrokoth), B &
N B B BRI 3 1 ez () R A s, B S
IEAECARFAEZ) 48 T3 TR IEREE, KRR Ril%.

1.9 2011 &F: KRiES

VS (Juno) T 2011 4F 8 A 5 HKRY, #4
BT8R (R D CRETEE U
MAERE=EZ FHIH AT (Siddiqi, 2018),
LAY G R e (Jupiter) 2 3. A LLEIE
BRI RIS Fin 4. #0E 2018 4, KikS
CA&REGRE T PR TR ESIREER, HEE
HATIRE K, R GE, DU R R4
HX . SRS B EE T TR R, (R4 S3
REERE REARE R, WAKENZZE. WE
PLR IR, (Bolton et al., 2017) .

SRV 5 R 51 B A B SRR
TEAR S 200, BANFIEARRE RS SWA Z . M
FIRG 5 PR EHEUR o, REFRSH0T0%, M
RS PO R S ) B R AR B KA AT RE LR S R A
W25 R EWNR V2. KRR IR XS KR AR L
#1749 0.25% (Lietal., 2020a) .

KRGS 2 GBARE, 28] 7 KB =4
L. Moore 55 (2019) ¥ 2K % 5 M EHE 7 2 B 1
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o T4 HIR ST RYERTE (h3Es0

2025 4

JEIRE 10 5. LBIKE 115, RkITH 15, Ul
Hr5 SRS B R AT By, ORI B 1) 3%
BE 32581k, BEAh, Connerney % (2022) &k
MARRRHX CRIERD A 3AEH w7 K A2
WANER IR, - EATI N, TERAREIRIA 3500 km
(1) SLIRURT R £ 5 X 3378 AN B B 175 4 it 35 K B2 1
e (JBAREE, 2024) .

KT RHE—NHEAKREWRPR AT, XA
B ACPINRGEAT 7R A MM, X2 Z 1R
B 7R T8 P TRV () 6 AT 28 I lOAS 2010 Rk 5 A
Bl JunoCam 1% [8] | VF Z KR, ARE M
=R ZNE A, SV Z BRI XE,
XAER PR R — T ). RiES KRB E LW
84°LANH 9 NMTiE, TFEKk 84°LAN HAE 6 M.

Rt 5 IR B LM A8 A (Jovian Infrared
Auroral Mapper, JIRAM) % A B #z [X AT 1 Ak # e

(hot spots) HEAT T ZLAMLM, 3B WM T AR B HK

J (Adriani et al., 2017, 2018, 2020) . [F] Bk 6
R EE —HF, 7 ORI R SR R R 1) R I 2
PO, HEROE T S RERL - RAHA LT T
R RE &, ARE OGS ek T R & 7] ik 40
T3 AR (Mauk et al., 20200 . AN, HGEEE
ARPTERENCIREME— R R, KE FiRiEm
WOt H AR ISR 2 5. RER AR KL 2
HUER 11.2 %, ATLDAVAESR, M S . FE IR
MILTE 2 R RO CE [FARAE T X — B K IAT 2
b, B—RIZ AT

1.10 2023 &F: KEKIDEHRNZE (JUICE)

AREIKBEZRNMES (Jupiter Icy moons Explorer,
JUICE) ZHIKTFES. NASA S HWAR LK
UK TEARIMTES, F 2023 454 H 14 HRST.

AR VK BRI K AE 2 KL 8 A I [A] KA
BRI e R siEFIH R4, (KA
ARG, REKDEFRMNBHEAGARE, WAL,
= W, &A= KEKTEHFRIZE L
SR T 10 MRS (R D .

AREVK BRI ZS 1 EEAL S Hir 2R R
TR =E L R =T A ROR A T
B, WAHBEN T EEME, I HIRERNAE K
BRI, HAREZENTFHPRESEAT R
KHFIT, FHamA RS EAT B BT8R s E
IESIX—FH KR} @ (Grasset et al., 2013) .

2 KBRS TR

RERRAW T L AW T REIK
R EERE. RERIMRIE AR K2R
FELZRPEAR B R ik N7 A AR 1R A
J. REBERTP AL T, WL TR A
BRAMR S, ARESFRZEN IR 5 By
AAMESAR, KEERZZERER, shiT
FERZ D IR TR X i 2 1 A EE T FEAR
KA. NENSHIMEE, RERMAHERNETEG., X
=l RE ERRSZERN, RE LSRR, Bl
AR BE LI REAT A, AR B B Al g2 B4
AR, ... X H R RE IR TR B0 J1 5 )
AL R TR BRI . RERIBEEN M S . AR
BRI AR b EX DA J7 A 4R 2
IR FCRERE.

21 KREXKEHS

FESCIRTE 10 SRS AT, BRI H =4
B, M BOK 7 B8 B8 55 T BV R B KT T
W (K =%, 2014) . WA E Lok B DL &
SRR B G HEAT S0 73 A, P R4 3 2 R vk v] BA
HEM AR B KA B CIngersoll, 1976) . ] i,
Houck 55 (1975) FIHIARE 16~40 um fth R,
RHAREE S TIRA LN 0.89. S0k R 51 HIW
MEERADGTIE 7R AT 518, BRAREKR
SRS AT I BT HERE T — 5. SR 10 55841
FEVHTE 584 AR A B 2 A 478 0.18

(Carlson and Judge, 1974) . JiK4T# 1 5 Rl H £ 4k
JEIE MR EA ST EEL N 0.897, FIHTL
RS S 75 =218 0.880 (Gautier et al.,
1981) .

XA AR LR A%, Larson %5 (1975)
SR R B R R R A, KIS um B XA K
RO 2R, F5F B e s e gk, 15 HKIR
[P EE R 7 EL 2928 107°. fin A Bg #8 % (Galileo Probe)
T 1995 4K FH B A B ks T AR B KA
Zuk BT IE 5 (Atreya, 20100, &I H, &5tk
86.1% He il 13.6%. CH, it 1.95%0. NHj i
He 0.57%« H,O i bt 0.43%0 . H,S 5 L 0.078 %o«
Ne 7 0.0021%0, W15E 2 fiis. EAH HIZ, X
By JEAL IR Hts o — IR a5 5, FEAR &
KER, RRT\EZREGWHINE. I, KEX
AT B R B o A 2 A AR, JEHE HYO
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F£2 KEKSNSD HIEKE Atreya, 2010)

Table 2 Jupiter atmospheric composition (data from Atreya,

2010)
Sy RAL
T H, 0.861 + 0.004
He 0.136 + 0.003
CH, (2.05+0.49) x 107
NH,4 (5.74+2.19) x 10™*
HO(# i) 427+151)x10*
H,S (7.74+1.85) x 107
Ne (2.14+£0.15) x 107
Ar (1.57+0.31)x 107
Kr (7.53£1.41) x 10°
Xe (7.68 £ 1.46) x 10°1°

A NH; &8 7 i) 25 | 2 5 AR R, — AR EH 45— AN
B LM LA L.

AR B, AR E IR A RRIE A
REZEN=E. AHPMEM, AKERIE O
A4 Mz A X (Chase et al., 1974; Keay et al.,
1973; Westphal et al., 1974) . & =X N KA BTz
XK, =R E, =URERAC, FEER NiZ
UK, BIAMG; KRNI s) X,
RIS TR RS, T 2R B2 NH,SH,
S 0. R AR B R TH AN = T FE W) 6 3L

(@ M (b)
60

LREEN°)

~100 0 100
i WY/(m-s™)

B2  ARESHAMASFRNE (5] H Kaspietal, 2018) . (a) WAEITEMIAHIIARAIALZE R (KH https://en.wikipedia.org/

wiki/Jupiter), ¥ EXEAFEH (Zones), W X

AXFFRIE (c)

W T

-100 0
i) WU/(m-s™)

IF, AH R 5 B IF AN B 52 4 HE W th 2= (040 2% i
gy B T A A, Ko At a]
CLESI A B B, B an i 58 728 IR I J5i P K
SR ARR = 7 T REMMEAEER (Khare
and Sagan, 1973) .

REF RN A2 = (spectrally identifi-
able ammonia clouds, SIACs) RE & KEAF 1%
HIZ M (Baines et al., 2002) . £ 5 IR L4t
H 14X (Composite Infrared Spectrometer) i 7~ )
AR E = K2 AR X B A4, AR
AR KRR T B 5 Z B (Wong et
al., 2004) . FALE SR AN GIEIE SR T AR
BEFFW, 0P 140~200 km, R T
UK e AT X KRR,
N IRV = PREE Y N N i kL E N = het i
I 28 & (Reuter et al., 2007) . K2 KA EEH
5 53 M FOETE R AEAE — B R FE ] DR AR 2
= N I R R,
22 KREHKHFMZR

KREZTANA FE 2 RMGE, &FERy
B 727 (Zones) FAMETT (Belts), EATEHIE

A EHLIX, AR LN 2~8 AN,
Pl 2a 7. S ARG A7 132 L m] DAR 38 & 17 X9

100

i (Belts) . BESZLNRTES T 2016 4 12 H 11 Hll&

KRR ZZ PG R R (5] B Tollefson et al., 2017) . P& £ Ly 45°, G JUZRIE (b) . (b) AREILFERS
RS EERE FRAZE. (o) RES RS L FEARAEREE (51 Schneider and Liu, 2009) . AR L )
WG, AEENIE, WEONR. SmAARERE R TR R, KON B, AN £

Fig.2 Asymmetry of Jupiter's zonal flows (from Kaspi et al., 2018). (a) Image of Jupiter by Hubble Wide Field camera (from
https://en.wikipedia.org/wiki/Jupiter). The bright, light-coloured bands are called "Zones", and the dark-coloured bands are
called "Belts". The thick black line shows the zonal mean flows at cloud level, taken by Juno on December 11, 2016 (from
Tollefson et al., 2017). The longitudinal spread of grid is 45° and the latitudinal spread is the same as Panel (b). (b) The asym-
metry of Jupiter's cloud level zonal flows between the northern hemisphere and the southern hemisphere. (¢) Schematic figure

for Jupiter's zonal wind and mean meridional circulations (from Schneider and Liu, 2009). The colors show zonal wind.

Orange means prograde and blue means retrograde. Contours show the mass flux streamfunction of the mean meridional circu-

lation. Solid line means clockwise and dashed lines means counterclockwise
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+76. HER 51T B FBIE (P30 2025 4
C=-0u/ 0y E L, HrhuREBA TR, yi{E A& (Dueretal, 2021), W 3a-3d Pizn. kAT H &
R, 2 In) R R AR AE Rk A ﬁ%%ﬂﬂﬁ%ﬁ’]ﬁj\ﬁ FXF A BRAR A BEH X I &5 SR 7R, FERRRAR

(a)
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@ |
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0.10 |- L [ E
0.05 | C o )] 2
() 2 <10 l NH, (JIRAM)
® K
200
400
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i 600
o o |
()
142 ‘
0 MWR 7, il 6
193 ]
191 MWR 7, ilii#i 5 w
249
M\/l\ MWR T, 38 4 /\/\~/\/\/-\\/_\/
247
332
/\/\/\/\/‘\ MWR 7, 3 3 \/\M
328 ]
461
465
868 |
-\/\/\/\/\/\ MWR T, i 1
862 P
-60 =50 —40 =30 -20 -10 0 10 20 30 40 50 60
RLERRE
K3 RERSsHIHLE (51 E Dueretal., 2021) . (a) RKEKSZTEHREHA. (b)) FimX. () FRIRIREL = -0u/dy.
(D WA BEBERENES [-0wv)/oy]. (e) WHBEZEE M. () NHy B Z M. (@) &K V5 b 5t it
(MWR) E AR KS~0.7 £~240 bar 7R (Ty) . (h) TR 6 NSRBI E M KSR R R,
FEMRRTIHRELIN 0. 20, 50, 90, 150 A1 350 km HI1EH (5] B Janssen et al., 2017)
Fig. 3 Atmospheric dynamics of Jupiter (from Duer et al., 2021). (a) Zones and belts of Jupiter's cloud top; (b) Zonal-wind; (c) Zonal-

wind vorticity (-8z/85); (d) Eddy momentum flux convergence [-08(u'v')/95]; (e) Lightning distribution; (f) NH; distribution;
(g) Brightness temperature (7},) from ~0.7 to ~240 bar, measured by Juno Microwave Radiometer (MWR); (h) Brightness tem-
perature at different depth, measured by MWR's six microwave channels, showing the atmosphere at 0, 20, 50, 90, 150, and
300 km depth (from Janssen et al., 2017)
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T 05bar KR )Z, i E EARMERRE—E
(1), TR, =X RGBSR R AT S R UL
RWMA xR, RERS, =B/ (Gierasch et al.,
1986) . REMFILFERZA 8 MBS IKB L [
WL, mWHhER R A R KA —, B2
IRIRI. B AR e AR B A buth Bk, AN E R R
FRER, RAWEFERS.

KA S HEEN 6 AN BB o A S v E T LA a5
AREE 0.7~240 bar fIR, Rk S BRI A
AR AL 60°Z AL E] 75 16 NP
E I EFHFI TR UUX. Duer 55 (2021) LB S N/RER
Yy, R TR EUERL, BT IR SO RRE,
AT AR E & M ) s Bk B ORAsh, IR
DAL TK A, RERSW BT SGEE
EINHIBERAE—E, PRn DLd W oA H kA= )
B EMIPRHISLE (Brown et al., 2018; Little et
al., 1999; Porco et al., 2003) .

FEGRRZ I RINA, AR B RGE B A KR
B 38 i 9 7 CIngersoll and Cuzzi, 1969), X A
AT ARERAKEES, RERIIREGHIK
PR —FE, MR PR IREZ b,
o SRR R R IR. R R BT, AT
TUC B, SRR S BT, BT
RIS NI, M R BF, = fl e
MTE S B s TER, SERENHEE R
. 55— MEEM SN, RE ERXAERSIRZ
IR 58 (Busse, 1976) . IR KL IEIER, W
RERSGENE T UK R B F o 3t
M OB, RAEFRY LI ESE M

( Taylor-Proudman theorem), UL % ALy B A A8 %
A §EHs (Kundu et al., 2015) . AABITEARERZ,
A ) A B B A ) R W SRR B RS RE T,
M2 -5 S EMAREH, KRAAUERA
BALB AN, AR BRI T 5 2 R 28 IR JEHL
fil, BSRAER, FTFERERTIRZFEESK
TR K ENAE  (Ingersoll et al., 2004; Vasavada and
Showman, 2005) . Juno HJ 5 /33 WIESE T AR &
WAL E] 2 )2 LR 25 3000 km IR JE (Kaspi et al.,
2018), (HIX A fE 72 2R R ENLH] (Kong et
al., 2018; Showman et al., 2006) .

1986 F, JRATE R AE ORI B 7R E 1)
JN W 3 (Flasar and Gierasch, 1986) . ¥ LI} 5
FE 11~45 km (3587055 U] 75 300 km,
FH I3 EL 2 i) KUK 100 m/s R EE DS (Reuter

etal., 2007) . AREIRIM K —4Eimim il p R 3L [F 1
M 3BT A2 B B4 M X (Rhines, 1975), 3) &4
HXFRIER R CEVERZRKR. 517 R B ¥ 77 A
[, ZhEfmEEos MKy (ERRER. 517
BEETTWMERD . BEA TG, Hia KO
559, EeAARHIR B 5 R

ZLAN I A, AR B B 205 38 1 X~ IR R AR AE
4~6 5 JH W, PRIE L0 5 KR B A RSB
( Flasar et al., 2004; Friedson, 1999; Giles et al.,
2020; Orton et al., 1991; Simon-Miller et al., 2006)
5 R8N 100 m/s 1) SR AR PEAZ B (Orton et al.,
1991, 1994), X —IREFAMEIFEREY (quasi-
quadrennial oscillation, QQO) . Leovy % ( 1991)
5 Baldwin 5§ (2001) W4, #EPUSERG RS
IR b HE AR R WL AR AL 3R B Y AR R
(quasi-biennial oscillation, QBO) KAETEFREHX,
JHIZ) 0 28 N H . — LB S BRI 5Ny, Mk
AEPIAE R 7 42 78 5 T SN R R
BRI SR (Lindzen and Holton, 1968; Lindzen,
1970, 1971, 1972) . A2 U 4E R 35 1 i 9k A= i
B A 2SOAZ . 1980—1990 4[] ML 31 i v DU 4F 72 3
LN 5.7 4, T 1996—2006 4 [H] WL 21 () J# 3A
N 3.9 4 (Antufiano et al., 2021), Lian 28 (2023)
I, AEVUAE = % A B ) 23 ] R A2 A6 i 1R 2% 1) S
PER J& 3 BORE IR = ORI SR ). AR BT
VULEFE S TE 1992 4EH1 2007 £ HBL T B, [
I i 38 MR 45 B2 3t X PR B A 4T B R R 3) .
Antufiano % (2021) A, KE ERHENFERE G
TR R AL R SR 7 R B I BSOS,
SR E R G M LB WEY (quasi-peri-
odic equatorial oscillation, QPO) [ 1 K7 ML #1] A~ [A] .
ik, SRR SRS ) AR LA B RAT R A
RGHIIENE, BN R EAEN, AT R R
JEI 372 3% AT DAAEAN R AR Q2 ] ) 36k

23 KRERIKLOBE

RPN T AR 22,30 — KRR X,
NI AR I R SUE (Rogers, 1995) . A
XFRELLBE R R E A, 1665 4R 16 Je i 5 W
W TARRRMM— “KRABER”, HETE
1713 2 Ja, KT ARE R KL HE 103
KA KR, BB 1831 4F, KEFRMA “K
[UTRE A PO A 4 ] R S 92 B 2 g IR LA - it B D
(Heinrich Schwabe) MLIFfid s Rk, AMTWN45F



° 78 HER 51T BYPBTE (P

2025 4

BRI R KL R 74 Je Bl 21 i) 2 A 2 [ — 4
KADE, EHEFHEIE (K 4) .

RELPEUNA B AR RZION 16350 km, 2 HiEK
BHAAM 135 £l 2 LEFM, KA 2
BETAR/N. B 19 AR, B0 IR LA
g g LB, HEELD N E LT
BH &£ (Reese and Solberg, 1966; Rogers, 1995) . Jig
173 15 WAF K L0 BE B9 26 ) 85 2 9 1.3x10° km
( Beebe and Youngblood, 1979), 5 1880—1970
i) 5 OR8] ) K £ B B 11 S B s AH W)
. RATERIDGA JLAE X071, HIAEL 6
BUON S TG, AR G BOA SIS M, A
T FH Jz H 22 466 2 e KA 7€ 3 (Simon-Miller et al.,
2002) . KELBERITE AL M AR TE 28, (2RI K
BN EERHEN, KL BEAA AT Re e AR 2 /N e
BETE KRR, XM AERENRF Y (Choi
and Showman, 2011) . %, KRLPHK/NA]HE
T lE S S [AAH BAE 4551

j(@ﬁfﬁ’]ﬁffﬂfﬁ ﬁE—ET’E% Reese*ﬂ

M%kﬁﬁ%ﬂ%ﬁ9wu%,ﬂﬁ%ﬁumm&
Ferbak b1 & RESR AT TG, 1979 SFRAT#H 5 Bk
LI B B R 2L B T i R B 9 6~8 IR, M FH X i 4
BRI B 7 KAEAL (Rogers, 2008; Sada et al.,
1996, 1996 4 2 4l i A1) Mg 5 XU £ 478 H#E 55t HY
KRABE e % I W29 5 K (Vasavada et al., 1998),
1M 2000 4, AR (0] w2 IR i H 4 4 55 o ) S
M 45% 8 3 KA (Rogers, 2008; Simon—Miller et
al., 2002) . Rogers (2008) AN, [ifi % i [A] k3,
KB K AL BE 2 bk A B PR Y. KL BEAE 0.89 um 4
R e IR SO BUE R AR 5%, 7E 5 pm A 10 pm AT
AN B AR I . 3 P AN e SR B R 20 BE ) = Tl b

oA 7 B & . MR HE AR (Rogers, 1995; Simon-
Miller et al., 2002) .
2017 SR T 5 IR KRB RLLBERS, HLR

RO RIS KA BEURFE R ZI7E 100 bar &b CXf M4y
240 km), I T AR 0.7 bar = )2, (HR
PRI K Al B R LB E 1 5 /ME (Bolton et al.,
2021 . 5| FIERI I K LT B IR B 1R 3 — o v,
DR A R 41 B Adh S AR [ T 25 25 B 5 K 4D BEAM R SR %
FE Z . RS BRI, KBRS
S S AR R T IR I TR, I K 21 B 1)
RIS A REAN L 500 km (Parisi et al., 2021) .

2.4 KRERHRHIAKE

KT X T AREMH PRI IB R, RS
ZHTHAE S BUIE K 2 SR B RIE AL, BIRHE
11 540 80 B2 A X I PR B At HL AR P i, TR
V5 T URORE A B A b A 17 T T 4 3550 O

IRAVE SRR RN LA B A B, R
B R A AR X ) 30 e T B 2 1 TR . FER A
PAMB] T 8 AN gl 58— AN e e i i 4544, AE
AREFEROIE] T 5 N e IS8 1 AN e e i 1) 45
Ky, ol 5. PRI 6 TR e S5 A B SR IR RS E . H
RS NI K EHR ARG H I T 56 7 4%
AN REIRIRTE, S SR BN SR I IX — 7N iR R 1
H T R IX % (Figure 1 in Mura et al., 2021) . &%
TR B LM AL (Jovian Infrared Auroral
Mapper, JIRAM) &7, PR AR e AR 7E 84°Fft i
KA T ELL 5 MR I, X jiE— BET
PR 400 km. J& 1 12 > H KR 2% (Gavriel
and Kaspi, 2022) . A% 3 g CASF- 35 65 4F 3°, T
AR P R e AT 35 B3 41 7.5° (%036 2 1) P VR #% (AdDri-
ani et al., 2020; Mura et al., 2021) . Li % (2020b)
FI K 7 FERTA B A b i B AT 40, I3 3K
RERIIATEA A I EZ K Z 2 LS|, B
A0k T S B ) T 0k T B R T IR PR T M b i e ) A
SEMEWRA — S A R DR MORSS . R, W
Wi iR e 25 & HF B AR 25 2 TR 25 s a0 SR AL 1)
K, DU b i e 2% 73 BT oK . Gavriel A1 Kaspi
(2022) NA, RIERE G AE I 5 2 18 m) A

1979$3H 404nm 1994 4E 7 A, 410 nm 2000 4F 12 A, 440 nm

1979—2017 4, T“%/BZE&T?!(E?CQIEE’J%/MEE
(51 8 Simon et al., 2018) . 1979 4= & Jy 3k H kAT #
5, 2000 EH%Q%@}E%. HARBEARERIE
L
Fig. 4 The evolution of the Great Red Spot's shape from 1979
to 2017, at blue/violet wavelengths (from Simon et al.,
2018). The 1979 data from Voyager, the 2000 data from
Cassini, and the rest from Hubble
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Hur) RS AU A A LR e, IS 1R

RIGUEIX —FE. AR B e TR R 4EHF 51

o H AT B R A3 T FURT T A AL

3 WrsSREE

KRR B IRNATSS R B PER T, —=&
PEERBRTARER R0, —REAKRETLE
AT

N ARBENE TR &R EE ST KR E
TLRTE? BUSGERER, KENFIHHUERT R
PLTE B8 i 4 6%, svF a] DU R IX A i) R
(Pirani et al., 2019) . A3, A ORABLAL [
RELZE SRR ANRE 5 2% o5 U B A 2 A B A W)
4 (Helled et al., 2022) . KEMIWZREERER, W
Wit 552 A =M B ) (Debras and Chabrier, 2019;
Wahl et al., 2017), KB FH/KKREME, 252
HSEuLR -BEERETE AL L (Crawford et
al., 1994; Sprague et al., 1996) . ¥ 51X L& ] A Bh
TR RA R R YRS AR, A BT R
FAVER RS EAT B R HE S, v R
(R AMT I T 22 R PraR R IR AR,

REBFUR. BEMR, DNEHIR—FAEIRM
Hi Y SR i o AT, — AN ERAR BAT B A
FEA. ARE R KB RAT ALEIZEH N, K2
A AR TR e A AT ARG I, AT A r AR
TIER A —FE, AR IR L5 7052 B,
KA TEEEMEAF XA AR, ... XK T
ARSI ) A 75 B — 25 PRI R AR AL

North and south pole of Jupiter, imaged by Jovian Infrared Auroral Mapper instrument onboard Juno on Feb. 2, 2017 (from

AT RTZFR PP = oK TR 1 A 55
IR PTBEAFAEIRFVE, W] REAFAE A i BB PR, 2023 4F
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