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Abstract: When seismic waves propagate in layered structures, dispersion phenomena occur. Based on the
characteristics of dispersion curves, underground velocity structures can be estimated. Using the surface-wave dis-
persion curves extracted from seismic records and ambient noise for inversion is an important method to constrain
the structures of the near surface and lithosphere. In addition to surface waves, significant progress has been made
in the research and application of leaky modes and their dispersion in recent years. Leaky modes can provide con-

straint information for velocity structure inversion, including P-wave velocity, and can compensate for the short-
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comings of surface-wave dispersion inversion, which results in more accurate and comprehensive velocity model-
ing. However, in comparison to surface waves, the amplitude of leaky waves in seismic records and ambient noise
is typically much weaker, which leads to significant challenges for the extraction of leaky modes. Furthermore, the
study of leaky modes requires a more intricate theoretical framework and numerical solution techniques, which
have historically limited their attention in the scientific community. Over the past decades, the theories of leaky
modes have been increasingly improved with the relevant research in seismology, optics, and acoustics, which give
rise to effective numerical computation tools. This has laid a solid foundation for the practical application of leaky
modes. With the increase of high-quality, high-density observational data and advancements in data processing
techniques, geoscientists have successfully extracted leaky mode information from various types of data, including
natural and artificial earthquakes, as well as ambient noise. This has led to the development of velocity structure
imaging methods based on leaky modes. Currently, this imaging approach has been successfully applied in velocity
modeling for earthquakes, ambient noise, and exploration seismology, which indicates promising potential for fur-
ther utilization. In this review, we begin by introducing the theories and numerical methods of leaky modes. We
further elaborate on the significance of leaky modes in velocity modeling from a sensitivity perspective. Sub-
sequently, we review several representative studies to highlight the significant advancements in observation and
analyze several proposed inversion techniques. Finally, we delve into the critical issues surrounding the use of
leaky modes in seismic imaging.
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Fig. 1 Schematic diagram of the generation of normal and leaky modes. (a) Propagation path of S-wave incidence; (b) Propagation

path of P-wave incidence. The symbols S, RS, and TS represent incident, reflected, and transmitted S waves, P, RP, and TP

represent incident, reflected, and transmitted P waves, SW represents sliding waves, and the numerical subscripts represent

different incident angles
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SMERT. A T bR R TTER S ok, W] BLE
T e % o B ) SR AR R R A BB (] 3b), 1K
T 52 B 28 BUVE FR A Pekeris 32 #28 (Jensen et al.,
2011) ML, A T PRUERB AN B BE R Sy B4 B
fENT, 2R BB 5 i Sommerfeld #2615,  # A
RN Y )R — AR B B CEE AR,
1999) . HeiGmBue s, WX (7 Kl ay
PLRIN AN Z AN E DU fU B ORI S A 43 1)
gir. i 3b fs, BE (). () A (=)
RS U E B RO O BB Tk, Hod ()
R U E A AR T IS, e Tkt 1
B, (+,-) M (=) B2 00 B IEA A & it
B, (0 BB EWEGhbs EXTNERE 1 H
LR R RN OL, BDRA S REEIEAN
2 2% [ I o R A X 110 3 5 FEE AR T LN
DAL I 0% 76 AH 24 DK 1 R B S By A 21, Hb 7R 2
Hh PR L 2 451 T AT X — 2 Y R A OR i
B (=) BB MR SR EXTNEE 1 R
LA R EMIRIE O, B P. S S REE AR
AN, MR RE B IR 98, IR antk, HETM
WA TE R SR H0FE BERE A B U 22481 3X — 2 A 1) i
T2 LT 7E I Hh e N T oS0 (1) X 3 S it 1) ¢h 7%
PR, kA %Y (Ryden and Lowe, 2004;
MR ARG, 2013) . 3 B PR 6 T8 2 v AR
fE Snell FEAE T, TR ASHA KA, HILE =

% 4

hY

o] AR AR CEAEIR]D) 0 B 5 Tt U 4T 00 SR A7 AE.
111 FH T T 5 AR R P 22 SR, e R T SR
RAg, FULAEISEUR B I 2. BhAh, S R %
£ (=) B2 EMAAET L, HE 3b FEIER
DHAZHNZERZT, HIEABEE.

45418 3b R MAR S B8 AT,  TESEBRIIEL S BT
Hh it 2 8 AR TSR 7 AR 5 70 i B mT LA
R R MR AT, BT (h-) BRI
IR, B R, R

1.3 GREAIEREY

1.3.1 S
A T —FF, LR B v R A
SRR 2 o FLEEAT AT 7T B EDW T B IRV
B i (R LR AS N g 2 W 0 3 1IN 7= i T S
THERL, 2 S T Y A5 X S T AR O SR B TG 1R 1]
MIB 9 S R s W G € I e o W (P 2 D e OE | 2
“F- JLfi# (non-trivial solutions), 3K fif ik #2 4K 2
AT BN T RS L1 A% A IR BER ke SAH R i
Wy bR B I R i ) R — AN AR SR MR R AR AR )
FURFEAE N b, FRORFEDEL. X T3, AiEcth
LRI T S A R — A SO 52 % Bk SOR AR 7]
W, HEl 24 KR 2 My B EUE 5%
(Chen, 1993; Haskell, 1953; Kennett, 1974; Knopoff,
1964; Thomson, 1950) A% T. H (Geopsy team,
2017; Herrmann, 2013, 2018) . SR i ik 452 2Xxt Bifr)
B WA, XA MR R SR — A B
PSRRI, A% G0 A T o) T v 7 LA 2 F S A 48 AR
73 1K e LLORAIE A (1) 50 B 1. B it s s =t 5
T3y AR R AR 7 ik I 2. 1 AR
N ALFEIEARE (B, Wu and Chen, 2017) Al £
J5i 3 77 vk (Brazier-Smith and Scott, 1991; Chen et
al., 2000; Delves and Lyness, 1967; Ivansson and
Karasalo, 1993) . #4028 e Ml A =0AR 1) — &
FIETHETT 46, iz F RS T vl B AR 154K
TR AR, A 3 B R AR Al T SR S

R RRE VUGBS HIR K F

Table 1 Correspondence between Riemann pages and mode types

5 50 WHOE R ) A 1
(+:+) Re(vy,;)>0HRe(yy,,)>0 AR () & T By
(+) Re(vy,,) > 0FLRe(y,,,) <0 TR L (PSR, S 5 T By HAE T oy
) Re(vy, ;) <O0HRe(yy,,)<0 IR # Foa




°8. HIR ST RYERTE (h3Es0

2025 4

AEE, ANATRe s IR AR 1) R D8 T e AR Ikl
A, NATTARE T 58 0 ad FH #2210 A s P SR AR D7
N TR ENHAER A (HE, iFMAEE
A DA 72 AR e A [ A B 2 e B
AcArg S (w, k) (10)
2n
HP Ny NVHENERHE, PIRSEE,
AcArg S (w, k) FRFAE P 1H L dy HE 54T — Rl
I, DR AL S (w, k) AR MR, N T A3 F A
HE Ny, WETFERIER AR P N0 XRHE
TR, SRS [R 7 90 22 R ARUHS ok 0 m] e B AN [
A% s AR, LA Haskell 45 FF  (Haskell, 1953)
Jo GBSOt 7 VA S R R R BN AE R i, TIRA)
N GEST 280 (GRTM; Chen, 1993; Wu and Chen,
2016, 2022) K4 AR R BOAFAE 2 MR AL XA
AT SRAFEIST,  —Fofr 5125 2 38 o Bl ) X 4 AT
B R, 2 ORI £ R R A 4 /N AR R BT A
YuH, AT S B A AR ARG 0 € 2 (Brazier-
Smith and Scott, 1991; Ivansson and Karasalo, 1993 );
o —Fh TV R B A B S A R 2
HAMAZE SR Z 00, KR E0E fOR AR ) &
B Ak 9 S T B ) Z2 TSR AR A A (Chen et al., 2000;
Delves and Lyness, 1967) . X} TEE 7 EHEA, &
A DR R EATY IR 5 o0 it 15 A 2~ DB #2041 Vi
FEIEAT AT EEMLTH, A4S & R HE, 1X—5AE
IRZAE LT IHFAEGME. F35b, ZITEFREEm
FEAR BB AL, DURIREZE 1 A 5 32 S it o 7 o
Al BE H B S A 2 € (Chen, 1993; Knopoff,
1964; Thrower, 1965) FIHU{E AR 73 A A 55 1] 4.
FEXS T2 TP ok B ARE . AR u4s &
TEAE 53 ) B B SR iR 598 (Kausel, 2005; Lysmer,
1970) 75 A 2 AR 2 A 52 8 B i Rt i 5L A RS 1 AR
P XN AR REE A2 15 22 SE 3, I BIRHIE
1B 73 77 1R AT DAPR GRS T I v S5 LR R R 1 P R
TEAR. AH A FHAZ 7 V5 5 B0 2 e 8 B 2% A, B AR
TS H & ERFIEME M 8 (Hayashi and Inoue, 2014) .
R IEAE U, T AR A 7E 2 2 Al vh B 4
B, RAHERA R & (AN EEERET
[&], Haney and Tsai, 2017) 53 JEBR 6% (Hawkins,
2018; Valenciano and Chaplain, 2005) #5g 53 21 f&] #.
(R MR IEAR 1] 3. AR, R A R AE R R 7
S FEATERR (B4, Gilbert, 1964; Haddon, 1984),
DR] 1 3% 799 A g v 0 TG v L e B i A XL i
Ju¥E (Mazzotti et al., 2013) DL K fié #7135 B 14 7L 4%

No—-P=

f+ (Hayashi and Inoue, 2014; Uranus et al., 2004)
PATEAS B H 225 0] 2 B % D0 T v 4t A B3y (B2
N TR BT, X 67732 7R R R AR AR 4
PERFIEE R, 3 551 F B B0 7 32 R i it s 15 =X
MR . 9 7R R AR ) 2 VAL, 23
ATTXF 24 23 (] R 3 A A T 2 PP A BT 2R
AL FE T AR A B ARS8 AL B R A N Tk 51 2k AR A
FE R —ME TR (Kausel, 2005), H A
SEEIULALZE (perfectly matched layer, PML) iR 2
B3z M (Huang et al., 1996; Treyssede et al.,
2014; Treyssede, 2016; Vaziri Astaneh and Guddati,
2016) . PML SRR HIfaj 8, 32 2R A 2 IR
T PML Z % (1) Berenger # = (Zhu et al., 2010)
PARASE B H) PML 2 550 B0 SR RS 2B AIK. Shi
£ (2022) FRH T — M S IR B 0 2 g AT UG T
VRPN IR EUE S I e SU i S S |
TP A AR RIS, DR B R A )
R N TR I AU = kBU )RR R AP AEAE ) . 1% 07 V%
LFARATREAEE, JFTEN KB (). (+-)
PIANER S T B RO, XA AR AR T R B
R A R AR S R T A SR I )
H. &2 88T K CIT 11 GB LAY, & xfix A
B, bl o ey R I oF B H i IEAR S P
Sy s R ("4 EETEERE, K3
Jo3e 1 7% R Rt L U8 B R T2 A5 ) Vs B A
WIE, RMAERCE ERFG BT R4S 8 U 5% AT
RSS2 PR AEAH T B /N T2 2 1) g S Bt B
oA (LA 4b) AHZIRATIE B I A ST 25 f&
PR, B IR SR A I ANE 1] 3b e FE A
FETE TG N . TR, 0 TR T P A A% 4 O 72 0
SCRIZ ARG M TTRRELSS  (Haddon, 1986), £ it
PRI AR ) R b AR A VT DL
132 BIRAHE

ARt 2 — o 20 0 B AR RO AIE AT KT B

2 fAifLAY CIT 11 GB #ifiY
Table 2 Modified CIT 11 GB model

J25 | (kmes ™) | BEE B /(kmes ™) | 26 B /(g-om ) | JEE R /km
1 6.58 3.55 2.9 35
2 8.05 4.6 35 34
3 7.75 431 3.47 54
4 8.19 455 3.6 225
5 8.84 4.92 3.8 102
6 9.82 5.4 3.95 203
7 10.6 5.8 4.15 0
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Fig. 4 PSV modal solutions of the modified CIT 11 GB model. (a) Normal modes; (b) Leaky modes on the (+, —) Riemann sheet;
(c) The combination of the normal and leaky modes (from Shi et al., 2022)

(Li et al., 2021a; Wang et al., 2019), I HAHXF T
G S ) = e W= R A L[| BT
FRaTAT T 0% HREIBTY, P A
B ZE P HO . IR A AR i R ) AR 5 R A
P 4 BN e R AR e PR BT, MR I R T SR

CH AR BRZD) ik &0 (7D 3 AR R 2K

g = P 2220 g RO S L

Bt RE. SR, FE T B e SR 0 AR 6 AN T 3B G Hb
238 B IE TR RS B PR 1)L B BOR A B (1A A0
PAKAT BRARFIK E S 30 S s (RIS 55 1)
R B E T R R, DAL R T DLAEE. A
X (7 ] LRI, % R Eo — A DU ok 20
o3 BRI R B PESR A BT AR iR A TR
AR /IME, R R BN NI TR A RE, A%
B H 1) JI% 1 55 55 AT DA B 9 S WA BIUCRRE . BT BA,
PATRR I I AZ bR £AF 2 A3 S BSOS (71 4o
Kl 7a) . I B EEATELRE 1) g A O AE A B AT DL
NS Ty SR AT 55 A5 X 0 A R I AU

% R U R FH DR v R R 2 A, T
CLRAE B AR IR A B — 2R 1) 7 ik (5 4, Chen,
1993; Haskell, 1953) . {HAESCARZR S E CRHIEFED
AT VRS, A IR A R R WA A R AT
A, R EE RS SEEEA R E . SLhriE
S 2 IR — AN L/ (1) R 0 B A B A I 55 1)
Bt CUBLRE AT 5 ) . B TS IR R s, Kk
RV AT AN B B S AR = 1 ks S, EAR
LA RE % 1 % oR E A DU R AN [ X1 e
BORTS, CEARIAYMERR TS SRR B r A B A
RPN OE &, Bhn, BT s B X A X
BAEBESNERAL, HAEESEE s F e

REGAR TR RETCIE R A, (AR Z Bl L2
PAREL R, X — i 5 H AT S BRI 45 R 5 1)
(Lietal., 2021a,2022) .

14 SRR BV AHFHER 1%

Rosenbaum ( 1960) #I Phinney ( 1961) iiF B
TS R AR BAE (44D B = T LLAME
FRGIER, X FECT MRS 5 i
B A R IR MU RRRRAE. AT A0, 64
LA S5 e T A XA R AR D O SR (Wu and
Chen, 2016, XK1 ¥ AT LU 2 R4 A 047
0 38 ik RO A% R i i I A R AR A U R A
X i B e A QU AE T o RS R AL R N A7 A e B
TER, T TE PR AR BE B ISR HE N T 2 A ()L X ey
IR, kR AR R AR A 3 0T BE IR D e I HH K
/N RE BB TR R A 9 AR S, HL ks B B B B T 5
ATHER B A% AL S R E AT 55 32 URFAE. (Garcia-Jerez
and Sanchez-Sesma, 2015) .

X TRAAEAE ] R, B — e AEIRCAR & B A 0 B
FEOE R AR I R, AR R B HH 37 eR 4
HR, IR RS 3. REAE 3 R 8 s i A5
A IRSNFFE, WA [FREE HRIE, AN 5> &
R s 22 S 5 AT AR 2 AR ARP A1 U 37 IR M £ 2 7 1)
P ek e B VR FEE PR BN T /0, i A e A 3 2% A
B 55 e Ak i 3 o 2 T it e A X PR AR A U 3 i B
Hh 5 T (T I E A R AN R Mo, it A =X )
R I PR AE 2 27 18] P £ il 2 R 5 38 N T 52 48 250
K CAlsop et al., 1974; Collin, 1990; Gilbert, 1964;
Haddon, 1984; Jensen et al., 2011; Shi et al., 2023) .
XS M A AR AR A WOy B SRR, B E
I R AR L 2 (B 5D L B Bk IX
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Real parts of the eigen wavefields at 0.03 Hz. The top row shows the wave potentials of (a) normal and (b) leaky modes. The

black and red lines represent the P- and S-wave potentials, respectively. Discontinuities can be found in both black and red
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lines because the potentials are not continuous when passing through the interfaces. The bottom row shows the displacements

of (c) normal and (d) leaky modes. The black and red lines represent vertical and horizontal displacements respectively. The
curves in the grey regions represent the wavefields in the half-space (from Shi et al., 2022)

Tl 4 K 3G KW B % I A 2% (Treyssede et al.,
2014), L SH WA, R 75255 18 = 75 a) A O
HRFR: B +9d,, =0 B, AT — AN ibEi R,
"B IR FIE 9 $0BE 1% 355 A2 Re (k) > OFTRe (yy) 2 0, 48
TR P2 7KV TE 1) AL F I 1) JEG 38 24 725 (Al 4L F e &=
105 L8 SRR FE A R B s 2] B3, NS, T
Y A% PR A IE 38 B8 ) RE B Im (k) < 0. T8 4 S AR 2
25 8] 9 1) U8 00 75 B35 A2 Im (yyve 1) > 04 BE {3 U Bl ok
FAROL, XA A 2 ] ) it e 5 2 RR AR R 3 7 TR
ORI SR, SIS A TR i A R R
HEW I T AE T PRz Ab AR 43 . XK Y ] 3b B
(AR 3 TRl B 2RI, 5 BE (R I AR 180 EH =350 23 D iR 7
B, AAE R IR MR N SRR 5. %
JEAR L P AR I, ANASE P T 5 ol 7T DAAR 2 3l
3R iR I8 1) A B R e B R RRAE (Allsop et al.,
1974; Hu and Menyuk, 2009; Snyder and Love,
1983), 11 ZE A T S I8 1 Ik T 7 2 25 16 S 1 2k
HOrTTR, 1X— 4510153 T 2 AN UE SRR 1 A IE.
DA 2B 9], (e AsAtE L (2008) i85t #fl
THERLIRAIE T [R] I 2% 18 B A ORI S R Lo AR 73 7T PASRAS
AEWR ) ey, b — SR SR ORI 2B I

Fig. 6

B 3R A5 B3 3 5 3 523 3 W AS R Sz 30 9 7 DT 7

(&l 6; He and Hu, 2010) . Zheng A1 Hu (2017) #f
FU T ARSIt S Pk (SR B
5 EUOT L S T, ARATT A A B 2 X
B HZ B I TTRRABE B, BN AW E
X EES.

1.0
05}
\:I_E_Bl
=
S o
&
-0.5
—— SRS R
| L BRI .
’ 2 4 6 8

f[E] /ms
B — 2 LRI W 5 kY (SRR o 4
B %FtE (5] B He and Hu, 2010)

Comparison between the sum of component waves with-

& 6

out consideration of a branch-cut integral and the true
waves (real-axis-integration result) (from He and Hu,
2010)
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FERILIRAE Sy, Bk b, P S s Pl
TRk, X R O] R R T R, Y (1) A U T
FEZERBOR, XF ok R RAh, PR
TR TR () AR BURR S BB AR5, (HAER 2B LT
HARTT DAFR I — & BRI FE 40 PR (Li et al., 2021a;
Shi et al., 2023), JLHXF TR IFZ.

ARHTJEL T, T R B A AR T SR B o T
(R ZI SRR BERNGN ) 73 28, T X ANRF /O P ST

(a) 8
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LI T P AR AT 28 Ho 18 i 2 e AL
T RE RIEE I T G, 2 ERIHZE RN DI
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Fig. 7

Leaky-mode sensitivity analysis of a model in the western United States. (a) The theoretical dispersion spectrum where "Oth",
"1st", and "2nd" mark the low-frequency £ mode, first and second guided-P modes; (b-d) Represents the sensitivity kernel of
the phase velocities to model parameters (from Li et al., 2021a)
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RS UL AR 59, X BIROH A BBURR EEAR 9, X
A — UL, K, T B BURE 2
BlriR i PERAE,  JF BAERE N 2518 LLR ) R4k 7
SRR . X SR A T T AR ot — b A AR
R DL R AT B ) SR A B St T AT REAE. (HIA]
It 2y B, X AR A v R AR UL I e AR .
A 2 B B T I R AR ORI [ 52 31 P 5
B, AT UL SO B A EOE , &
P T AR AEH % AT SR HUPE. PRIk, X = et
(RIBIF 7 3 22 N B R AR = A X UK R st —
AARTI AL G T 155 1) B IR B VA S 20 o3 AT
RETE.

2 PR A IR B Je i

T 304 A 1 23 I o A 3 b 9 AR 2 Ay B () Tk
£ 45 1 1 A8 1) B 2T B (Dorman and Ewing,
1962) . FEE WM EAR, JCHIET A HORK
e, TEAE B RERIRE SRS TR K FE (Shapiro
and Campillo, 2004; Shapiro et al., 2005) . 2=F A1
DA 75 1 53 g 7 A O R 450 P R B8 R o ke
H T S5 R T £, e BRI A R R
FRTETRE B350 A 2 B R R TR 38, 3 X3k
M T e M RS A0 2 K I T R T AR OK A B

(i, J #3055, 2001; Wu et al., 2020; Xia et al., 1999;

Yang et al., 2020) . FH -4 Hk i 28 f 32— A
LN 2 S R, 250 7 M 2 R T 454
1505, W 0L SR B0 A ith 2 2 06 = & R0 AT
FE. T FE IR 6 0k A0 5 e 1 0 00 Ab B EOR T DL SE
EZAEE B2 HC (Chen et al., 2022; Wang et
al., 2019), MM Jytth 4532 55 2 A 38200 (o,
Luo et al., 2007, 2008; Maraschini and Foti, 2010;
Wiggins, 1972; 5 & 1, 2020; Xia et al., 2003; Yokoi,
2010) . i IhBGHE A Z G LK (Gao and
Lekic, 2018), 4 i i 8¢ [ i b £ EZAK SR SL IR (5 B
(Zhang et al., 2020) F£ 55 A 3 (Brocher, 2005)
KAl TH B T IR O 2R s AR A T
FATHITT SR, TR IR 5 T v R e A AR5 it 2 T
AN SI N IR P AR LU 254, IR BR A% A
IR T A RS . ARRES R MR (Li et
al., 2018; Wang et al., 2012; Wang et al., 2022; Zhang
etal., 2019) .

WAk, EATMAAE RAHE (Liet al,

2021a) HEGFET 5MEA (Lietal, 2022). ff
I+ DAS 15 %5 (Fichtner et al., 2023) . 7 )2 i iZ
( Ellsworth and Malin, 2011) A1 A 3y 7Z #F 53
(Lellouch et al., 2022) M| 2| 7 M=, FH$2
AT A k) R AR SO R BT . B |
YR AT AT JER 8 DA 2 2% ) et JE A Y A2 A
L= A AT JE AR S 11 78 U 28 2R Rk i 25 4
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MR AT PE R Z R RIR 2, ARIFREE
TR 5 8 M R o) kR AR X 1) i A RO A7 7E
FER. I, EEARA LR R HR AR X
HO @ FEERG, A EA SRR R
AT Pk REE, RILEZD A EREN P S
IR A2 5 B A 2 AR T, RO
BRI = #50 (Gao et al., 2014) . 455 it
TR QR g, B A HRUTR L o3 My 7 920 T AR
i

2.1 SRR A

B4 B AT RS ) TR IR A S N B 7 V24 P AR
TR A . B R e B T B R D
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T 8 ABEY A £, IR 2100 T ) DA A
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et ol H R S 2 A, HIX SRR Ae
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V2 BRAT B U R . AR g — i SRS T O A RSCAS: T
Tiik, FET 2B RO RS S — P SR Tt
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EEIER, FIH Xia 25 (1999) $H 1) £ 1& I 2 4T
Jiik, e R R IRIC sk T Scholte TH A P S
TEAEL it 22 0T DA R I B 2 B H SR (Boiero et al.,
2013; Klein et al., 2005; Park et al., 2005; Roth and
Holliger, 1999; Shtivelman, 2004) . 1% % () % i 1 %
I HTITVER]T e 4R B0R By Fk R O e AT AR
AR bR EE TR L RS R R, bR
iR R AE = 4 [A) AR 3R (0. R - DL ZE IR AR ik
(F-J transform) 2% & | SRR b 5 P AE = 425 [a] o
A AR RN, A DL 28 2K BR HUE Dy ik o B80S N 747 i
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(Wang et al., 2019) F-RAAHFE P (Li and Chen,
2020) FOSHGI &R EAS 17T 2 A, Li %5 (2021b)
5T Python JF & T I T AAL CC-Flpy nl /5 {& 1
P He i, Xi %% (2021) & Zhou AT Chen (2022)
R DT /R R (5 =28 DLE R R0 R
X AD PR INZERRE, JFFERED TR
Hon] DLVH B RO )3 51 RS A A8 U (Forbriger,
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TR B R AR, K2 HEE S
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W, AE DAYV Y 5 SR T AR DL B4y o
NRIE OLERBJLHAR GRS MBS ILS
o, MRS & B — BARIE, A AN TR
7Y T 38 32 AT 1 o Dm0 % 81 9 s A AR (L et
al., 2022; Sun et al., 2021) . Mi7E—L LA =
M S (BIUnREEIRSEE) o DR IR R, TR
B (P33 BIRIEHE 2R, Fikegis
S PR S R AT 28 (Shi et al., 2023) . {H
TE K 22 H0R SR Hh 7R AN 55 Mg 78 170 i s A2 =0l o
FH T 2L T O A A E s, B Hh R e Stk
H H ARG R B E AR T, AU A i ) B A A
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Fig. 8 Dispersion curves extracted from waveforms before the S wave of the Nevada earthquake. (a) Location of the earthquake and

stations. The blue triangles are the stations in the XC array, and the red and gray triangles are the used and unused stations in

the TA array. (b) Part of the Z-component seismic records of the XC array used in the F-J analysis. A taper window (shown in

the inset map) was applied to extract the waveforms between the P and S waves (blue and red markers). (c¢) Dispersion spec-

trum extracted from the XC array. (d) Part of the Z-component seismic records of the TA array used in the F-J analysis.

(e) Dispersion spectrum extracted from the TA array (from Li et al., 2021a)
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Fig. 9 Dispersion spectrum extracted from the synthetic waveforms. (a) The reference structure under the XC array (blue dashed box
in Fig. 8a). The gray lines are the models in the dashed line area in Fig. 8a of Shen and Ritzwoller (2016). (b) Part of the syn-
thetic Z-component records of the XC array. (c) Dispersion spectrum extracted from the synthetic records of the XC array. (d)

The reference structure under the TA array (red dashed box in Fig. 8a). (e) Part of the synthetic Z-component records of the

XC array. (f) Dispersion spectrum extracted from the synthetic XC array records (from Li et al., 2021a)
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Fig. 10

The retrieved noise cross-correlation functions (NCFs) and dispersion spectra extracted after filtering and time windowing.

(a) The unfiltered original NCFs. The NCFs are normalized to (—1,1). (b) The NCFs after spatial stacking. (c) The original
NCFs after being subjected to a 1 Hz high-pass filter. (d) The NCFs after being spatially stacked and then subjected to a 1 Hz
high-pass filter. (e) The dispersion spectrum extracted from the waveform inside the red lines in Fig. d. The black points are
leaky modes used in inversion. (f) The dispersion spectrum extracted from the waveform outside the red lines in Fig. d (from

Lietal., 2022)
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Fig. 11  Frequency-velocity dispersion spectra. (a) Pressure component; (b) Vertical component; (c) Radial component; (d) Tangen-
tial component (from Girard et al., 2023)
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Fig. 12 DAS data and dispersion spectrum. (a) Time domain DAS raw records; (b) The frequency phase velocity spectrum of the raw
data. The modes marked with dashed lines include Rayleigh wave modes, X leaky modes, and guided-P wave modes (from
Fichtner et al., 2023)
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Fig. 13 Schematic representation of the inversion scheme. On the left side, black asterisks represent the dispersive events estimated
for a synthetic example at a certain location. Orange shadows in the background are the real and complex solutions of the
secular function for the velocity model on the right side. From top to bottom, the inversion algorithm modifies the S- and P-
velocities to match the estimated dispersive events with the secular function solutions (from Boiero et al., 2013)
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Fig. 14 Inversion results of LASSO array ambient noise. (a) The S-wave velocity (V5) models (red lines) inverted from the extracted

normal modes and the P-wave velocity (/p) models (blue lines) calculated from the empirical relationship. The gray lines are
the initial 5 models. (b) The normal mode and leaky mode dispersion curves (black points) of the average of the inverted
models. (c) The Vg (red lines) and ¥} (blue lines) models jointly inverted from the extracted normal modes and leaky modes.
(d) The normal mode and leaky mode dispersion curves of the average of the jointly inverted models. (e) The fitness curves
of normal modes (NM) and leaky modes (LM) decreasing with the number of iterations in inversion 1 (inv1l) and inversion2
(inv2). Inversion 1 and inversion 2 have the same initial 'y model. The initial /' models of inversion 1 are calculated by the
empirical relationship, while the initial /' models of inversion 2 are incremental models. (f) Sensitivity kernel analysis of the
NM and LM to Vp and Vj at different depths (from Li et al., 2022)
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