Development status of deep seismic reflection profile detection technology
-
摘要: 由石油地震勘探发展而来的深地震反射剖面探测技术,采用炸药震源、长排列、多次覆盖等方式接收来自地壳或上地幔的反射信号,经过去噪、校正、叠加、偏移等处理过程,可获得地壳尺度范围内的精细时间剖面,是研究深部构造特征、探讨构造演化过程的重要手段,发挥着其他地球物理方法不可替代的作用. 深地震反射探测技术自上世纪由美国率先提出以来,经过几十年的发展历程,依托一系列的深部探测计划,获得了多条重要的深反射剖面,解决了包括造山带演化过程、盆地构造模式、矿集区深部构造特征等众多地质问题,得到了众多地质学家和地球物理学家的认可. 目前深反射探测技术已经发展成为一种系统的、方法技术成熟的、结果可靠的深部结构探测方法,在关键地区也常常作为研究深部精细结构的先行军. 我们通过总结近些年深地震反射剖面探测的实例,从采集技术、数据处理、综合解释等方面概述了深地震反射剖面探测技术取得的一系列新进展及应用,包括高精度可控震源采集技术、线条图处理技术、全波形反演技术、联合解释等. 这些新技术的应用不仅有效提高了深地震反射剖面成像质量,也解决了深地震反射探测中面临的地形构造复杂、施工不便等问题,使得深地震反射探测在解决特定地区地质问题上发挥了越来越重要的作用.Abstract: The deep seismic reflection profile detection technology developed from petroleum seismic exploration. By using dynamite source, long spreads and multi-coverage, this detection technique can receive reflection signals from the crust or upper mantle. Fine time profiles within the crustal scale obtained through denoising, static, superposition and migration processes are the basis for studying the characteristics of deep structures. The deep seismic reflection profiling technique is an important means to explore the process of tectonic evolution and plays an irreplaceable role in other geophysical methods. Since it was first proposed by the United States in the last century, this exploration technique after decades of development. Relying on a series of deep exploration plans, deep reflection exploration technique has obtained many important deep reflection profiles and solved many geological problems, including the evolution process of orogenic, basin structural model, deep structural characteristics of ore concentration area and so on. Deep reflection exploration technique is nowadays a widely accepted research tool by geologists and geophysicists. At present, deep seismic reflection detection technology has developed into a systematic, mature and reliable deep structure detection method. It is often used as a pioneer in the study of deep fine structure in critical area. We summarized examples of deep seismic reflection profiles in recent years. A series of new progresses and applications of deep seismic reflection detection technology are summarized in terms of acquisition technology, data processing and comprehensive interpretation, including high-precision vibroseis acquisition technology, line drawing technology, full-waveform inversion technology, integrated interpretation, etc. The application of these new technologies not only effectively improves the imaging quality of deep seismic reflection profiles but also solves the problems of complex terrain and inconvenient acquisition in deep seismic reflection. The deep seismic reflection detection technology play an increasingly significant role in solving geological problems in critical area.
-
图 1 青藏高原深地震反射剖面探测工作程度图(截止2019年底,修改自高锐等,2021). 红线和黑线由中国地质科学院地质研究所岩石圈团队为主完成;黄线为INDEPTH项目,由中国地震局完成
Figure 1. The deep seismic reflection profile detection in the Qinghai-Tibet Plateau (By the end of 2019, modified from Gao et al., 2021). Red lines and black lines are mainly completed by the lithosphere team of the Institute of Geology, Chinese Academy of Geological Sciences; Yellow line is INDEPTH project, which is completed by China Earthquake Administration
图 2 不同道距单炮对比. (a)大炮激发单炮记录;(b)变道距排列混合接收的单炮记录;(c)40 m道距单炮记录(修改自卢占武等,2010)
Figure 2. Comparison of single shot with different track distances. (a) Shot gather of large explosive; (b) Shot gather acquired by viable receiver spacing; (c) Single shot record with 40 m track distance (modified from Lu et al., 2010)
图 4 不同检波器叠加剖面分析. (a)SN7C-10 检波器;(b)SN5-5 检波器;(c)DSU1 检波器(修改自王海波等,2019)
Figure 4. Stack profile analysis of different geophones. (a) SN7C-10 Geophone; (b) SN5-5 Geophone; (c) DSU Geophone (modified from Wang et al., 2019)
图 6 不同仪器240 m道间距的叠加剖面. (a)有缆地震仪428XL记录的数据;(b)节点地震仪记录的数据;(c)和(d)分别为图(a)和(b)的局部放大图像(修改自任彦宗,2021)
Figure 6. Stack profile with 240 m channel spacing of different instruments. (a) Data recorded by cable seismograph 428XL; (b) Data recorded by node seismograph; (c) and (d) are partially enlarged images of figures (a) and (b), respectively (modified from Ren, 2021)
图 7 青藏高原侧向碰撞带深反射剖面(修改自酆少英等,2020)
Figure 7. Deep reflection profile of lateral collision zone of Tibetan Plateau (modified from Feng et al., 2020)
图 8 大炮深反射剖面. YZS-A位于雅江缝合线西部,YZS-B位于雅江缝合线东部(修改自Li et al., 2018)
Figure 8. Large-shot deep reflection profiles. YZS-A is located in the west of Yarlung Zangbo Suture and YZS-B is located in the east of Yarlung Zangbo Suture (modified from Li et al., 2018)
图 10 深地震反射剖面. (a)为原始叠加剖面;(b)线条图处理(修改自李文辉等,2012)
Figure 10. Deep seismic reflection profile. (a) Original stack profile; (b) Line drawing processing (modified from Li et al., 2012)
图 11 层析成像速度模型. (a)层析成像速度模型;(b)波形反演速度模型;(c)和(d)波形反演速度的叠前深度偏移结果(修改自崔永福等,2016)
Figure 11. Tomographic velocity model. (a) Tomography velocity model; (b) Waveform inversion velocity model; (c) and (d) Prestack depth migration results of waveform inversion velocity (modified from Cui et al., 2016)
图 12 全波形反演结果对比. (a)初始速度模型;(b)全波形反演速度模型;(c)反射地震成像;(d)反射地震剖面覆盖初始速度模型;(e)反射地震剖面覆盖全波形反演速度模型(修改自Davy et al., 2018)
Figure 12. Comparison of full waveform inversion results. (a) Initial velocity model; (b) Full waveform inversion velocity model; (c) Reflection seismic imaging; (d) Reflection seismic profile covering initial velocity model; (e) Reflection seismic profile covering full waveform inversion velocity model (modified from Davy et al., 2018)
图 13 深度域和时间域剖面图. (a)地震剖面的“时间-层速度”关系拟合结果对比;(b)地震解释资料的深度域剖面(修改自汪俊等,2020)
Figure 13. Depth and time domain profiles. (a) Comparison of fitting results of "time-layer velocity" relationship of seismic profile; (b) Depth domain profile of seismic interpretation data (modified from Wang et al., 2020)
图 14 折射与反射综合解释图. (a)射线路径;(b)折射层析成像图;(c)和(d)分别为对应的反射剖面图(修改自秦晶晶等,2020)
Figure 14. Comprehensive interpretation of refraction and reflection. (a) Ray path; (b) Refraction tomography; (c) and (d) are the corresponding reflection profiles (modified from Qin et al., 2020)
图 15 速度模型解释图. 北倾的虚线为深反射剖面结果,上地壳的圆点代表速度等值线(修改自Li et al., 2013)
Figure 15. Explanatory diagram of velocity model. The north inclined dotted line is the result of deep reflection profile, and the dots on the upper crust represent velocity isolines (modified from Li et al., 2013)
图 16 噪声层析成像与深地震反射剖面的比较(修改自赵盼盼等,2020)
Figure 16. Comparison between ambient noise tomography and deep seismic reflection profile (modified from Zhao et al., 2020)
图 17 深地震反射剖面与接收函数综合解释图. 黑色虚线为速度界面,红色和蓝色底图为接收函数结果,黑线底图为深反射叠加剖面,蓝线为宽角得到的莫霍深度(修改自Tian et al., 2021)
Figure 17. Comprehensive interpretation of deep seismic reflection profile and receiver function. The black dotted line is the velocity interface, the red and blue base maps are the receiver function results, the black line is the deep reflection stacked profile, and the blue line is the Moho depth obtained from the wide angle (modified from Tian et al., 2021)
图 18 澳大利亚Musgrave省深反射剖面与大地电磁剖面综合解释图. (a)和(b)深反射偏移剖面解释图;(c)深反射剖面与大地电磁剖面叠加解释图(修改自Thiel et al., 2020)
Figure 18. Comprehensive interpretation of deep reflection profile and magnetotelluric profile in Musgrave Province, Australia. (a) and (b) Interpretation of deep reflection migration profile; (c) Superposition interpretation of deep reflection and magnetotelluric profile (modified from Thiel et al., 2020)
表 1 国内外主要深地震反射探测计划采集参数表
Table 1. Acquisition parameters of main deep seismic reflection detection plans at domestic and abroad
采集参数 美洲(COCORP) 加拿大(Lithoprobe) 欧洲(DEKORP) 欧洲(ESRU 95) Sinoprobe-02
(2008—2012年)药量 Vibroseis Vibroseis Vibroseis 45kg 小炮16~50 kg;中炮100~200 kg;
大炮1000~2000 kg炮间距 134.1 m 或 201.2 m 400 m 或200 m 或
100 m 或 40 m200或250或320
或360或400100 m 小炮80~250 m;中炮280~1000 m;
大炮20000~50000 m井深 10~15 m 小炮20~30 m;中炮28~
50 m;大炮50~75 m接收道数 48或96或120 96或120或240 或 1000 200或250或320
或360或40096 600~1000道 采样间隔 4或 8 ms 4 或 8 ms 4 ms 4 ms 2 ms 记录长度 ≥30 s 18 s或32 s或48 s 16 s 或20 s 或60 s 30 s 小炮、中炮30 s;大炮60 s 覆盖次数 24或48 或60 30 或60 25 或60或75 24次 50~120次 道间距 67.1 m或 100.6 m 100 m或50 m或25或60 m 80 m,40 m,100 m,60m 50 m 40~50 m -
[1] Andrew R R, Larry D B, Passakorn P, et al. 2004. Deep reflection surveying in central Tibet: lower-crustal layering and crustal flow[J]. Geophysical Journal International, 156: 115-128. doi: 10.1111/j.1365-246X.2004.02119.x [2] Bao F, Li Z W, Tian B F, et al. 2019. Sediment thickness variations of the Tangshan fault zone in North China from a dense seismic array and microtremor survey[J]. Journal of Asian Earth Sciences, 185: 104045. doi: 10.1016/j.jseaes.2019.104045 [3] Brown L, Barazangi M, Kaufman S, et al. 1986. The First Decade of COCORP: 1974-1984[M]// Barazangi M, Brown L. Reflection Seismology, A Global Perspective. Geodyn Ser., 13: 107-120. [4] Chadwick R A, Pharaoh T C. 1998. The seismic reflection Moho beneath the United Kingdom and adjacent areas[J]. Tectonophysics, 299: 255-279. doi: 10.1016/S0040-1951(98)00193-0 [5] Clowes R M. 1992. Lithoprobe: An integrated approach to studies of crustal evolution[J]. Geotimes, 8: 12-14. [6] Clowes R M, Cook F, Hajnal Z, et al. 1999. Canada's Lithoprobe project (collaborative, multidisciplinary geoscience research leads to new understanding of continental evolution)[J]. Episodes, 22 (1): 3-20. doi: 10.18814/epiiugs/1999/v22i1/002 [7] Clowes R M, Buriyank M J, Gorman A R, et al. 2002. Crustal velocity structure from SAREX, the southern Alberta refraction experiment[J]. Canadian Journal of Earth Sciences, 39 (3): 35 1-373. [8] 崔永福, 彭更新, 吴国忱, 等. 2016. 全波形反演在缝洞型储层速度建模中的应用[J]. 地球物理学报, 59(7): 2713-2725 doi: 10.6038/cjg20160734Cui Y F, Peng G X, Wu G C, et al. 2016. Application of full waveform inversion velocity modeling-building technology for the fractured-vuggy reservoir[J]. Chinese Journal of Geophysics, 59 (7): 2713-2725 (in Chinese). doi: 10.6038/cjg20160734 [9] Davy R G, Morgan J V, Minshull T A, et al. 2018. Resolving the fine-scale velocity structure of continental hyperextension at the deep Galicia margin using full-waveform inversion[J]. Geophysical Journal International, 212(1): 244-263 doi: 10.1093/gji/ggx415 [10] DEKORP Research Group. 1990. Results of deep-seismic reflection investigations in the Rhenish massif[J]. Tectonophysics, 173: 507-515. doi: 10.1016/0040-1951(90)90242-Z [11] 邓小娟, 酆少英, 左莹, 等. 2019. 利用浅层反射地震资料中的面波与初至波研究剖面浅部结构[J]. 大地测量与地球动力学, 39(4): 425-431Deng X J, Feng S Y, Zuo Y, et al. 2019. Research on shallow structure using the surface wave and primary wave of shallow reflection seismic data [J]. Journal of Geodesy and Geodynamics, 39(4): 425-431 (in Chinese). [12] Dong S, Li J, Cawood P A, et al. 2020. Mantle influx compensates crustal thinning beneath the Cathaysia block, south China: Evidence from SINOPROBE reflection profiling[J]. Earth and Planetary Science Letters, 544: 116360. doi: 10.1016/j.jpgl.2020.116360 [13] 董树文, 张岳桥, 高锐, 等. 2013. 华南隐伏古老造山带——来自深反射地震探测的信息[J]. 地质学报, 87(S1): 71Dong S W, Zhang Y Q, Gao R, et al. 2013. Concealed ancient orogenic belt in South China—information from deep reflection seismic exploration [J]. Acta Geologica Sinica, 87(S1): 71 (in Chinese). [14] Dong X Y, Li W H, Lu Z W, et al. 2020. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone[J]. Tectonophysics, 780(4): 228395. [15] Drummond B, Lyons P, Goleby B, et al. 2006. Constraining models of the tectonic setting of the giant Olympic dam iron oxide-copper-gold deposit, South Australia, using deep seismic reflection data [J]. Tectonophysics, 420(1-2): 91-103. doi: 10.1016/j.tecto.2006.01.010 [16] Drummond B J, Goleby B R. 1993. Seismic reflection images of major ore-controlling structures in the Eastern Goldfields, Western Australia[J]. Exploration Geophysics, 24: 473-478. doi: 10.1071/EG993473 [17] Eaton D W, Adam E, Milkereit B, et al. 2010. Enhancing base-metal exploration with seismic imaging[J]. Canadian Journal of Earth Sciences, 47(5): 741-760. doi: 10.1139/E09-047 [18] 酆少英, 李秋生, 邓小娟, 等. 2020. 深反射大炮揭示的青藏高原侧向碰撞带地壳骨架结构[J]. 地球物理学报, 63(3): 828-839 doi: 10.6038/cjg2020N0271Feng S Y, Li Q S, Deng X J, et al. 2020. Crustal skeleton structure of the lateral collision zone of the Qinghai-Tibet Plateau revealed by large-shot set of deep-reflecting profiling [J]. Chinese Journal of Geophysics, 63(3): 828-839 (in Chinese). doi: 10.6038/cjg2020N0271 [19] Finetti I R, Boccaletti M, Bonini M, et al. 2001. Crustal section based on CROP seismic data across the North Tyrrhenian-Northern Apennines-Adriatic Sea[J]. Tectonophysics, 343: 135-163. doi: 10.1016/S0040-1951(01)00141-X [20] Finetti I R. 2004. Innovative CROP seismic highlights on the Mediterranean region[C]//Crescenti U, D'Offizi S, Merlini S, et al. Special Volume of the Italian Geological Society for the IGC 32 Florence. Geology of Ital, 131-140. [21] Fu W, Hou H S, Gao R, et al. 2021a. Lithospheric structures of the central Solonker-Xar Moron-Changchun-Yanji suture (Inner Mongolia) revealed by a deep seismic reflection profile[J]. Tectonophysics, 817: 229043. doi: 10.1016/j.tecto.2021.229043 [22] Fu W, Hou H S, Gao R, et al. 2021b. Lithospheric structures of the northern Hegenshan-Heihe suture: Implications for the Paleozoic metallogenic setting at the Eastern segment of the central Asian orogenic belt[J]. Ore Geology Reviews, 137: 104305. doi: 10.1016/j.oregeorev.2021.104305 [23] 高锐, 肖序常, 刘训, 等. 2001. 新疆地学断面深地震反射剖面揭示的西昆仑—塔里木结合带岩石圈细结构[J]. 地球学报, 22(6): 547-552 doi: 10.3321/j.issn:1006-3021.2001.06.013Gao R, Xiao X C, Liu X, et al. 2001. Detail lithospheric structure of the contact zone of West Kunlun and Tarim evealed by deep seismic reflection profile along the Xinjiang Geotransect [J]. Acta Geoscientica Sinica, 22 (6): 547-552(in Chinese). doi: 10.3321/j.issn:1006-3021.2001.06.013 [24] 高锐, 李秋生, 赵越, 等. 2002. 燕山造山带深地震反射剖面启动探测研究[J]. 地质通报, 20(12): 905-906 doi: 10.3969/j.issn.1671-2552.2002.12.017Gao R, Li Q S, Zhao Y, et al. 2002. Study on initiation detection of deep seismic reflection profile in Yanshan orogenic belt [J]. Geological Bulletin of China, 20(12): 905-906 (in Chinese). doi: 10.3969/j.issn.1671-2552.2002.12.017 [25] Gao R, Lu Z W, Klemperer S L, et al. 2016a. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 9(7): 555-560. doi: 10.1038/ngeo2730 [26] Gao R, Chen C, Wang H Y, et al. 2016b. Sinoprobe deep reflection profile reverals a neoproterozoic subduction zone beneath Sichuan basin[J]. Earth and Planetary Science Letters, 454: 86-91. doi: 10.1016/j.jpgl.2016.08.030 [27] 高锐, 周卉, 卢占武, 等. 2021. 深地震反射剖面揭露青藏高原陆—陆碰撞与地壳生长的深部过程[J]. 地学前缘, 28(5): 320-336Gao R, Zhou H, Lu Z W, et al. 2021. The deep seismic reflection profile reveals the deep process of continet-continet collision on the Tibet plateau [J]. Earth Science Frontiers, 28(5): 320-336 (in Chinese). [28] Guo X Y, Li W H, Gao R, et al. 2017. Nonuniform subduction of the Indian crust beneath the Himalayas[J]. Scientific Reports, 7(1): 12497. doi: 10.1038/s41598-017-12908-0 [29] Guo X Y, Rui G, Zhao J M, et al. 2018. Deep-seated lithospheric geometry in revealing collapse of the Tibetan Plateau[J]. Earth-Science Reviews, 185: 751-762. doi: 10.1016/j.earscirev.2018.07.013 [30] Klemperer S L, Borwn L D, Oliver J E, et al. 1985. Some results of COCORP seismic reflection profiling in the Greenville-age Adiron-dack Mountains[J]. Canadian Journal of Earth Sciences, 22: 141~153. doi: 10.1139/e85-013 [31] 李洪强, 高锐, 王海燕, 等. 2013. 用近垂直方法提取莫霍面——以六盘山深地震反射剖面为例[J]. 地球物理学报, 56(11): 3811-3818 doi: 10.6038/cjg20131122Li H Q, Gao R, Wang H Y, et al. 2013. Extraction of Moho structure of Liupanshan by the method of near vertical incidence [J]. Chinese Journal of Geophysics, 56 (11): 3811-3818 (in Chinese). doi: 10.6038/cjg20131122 [32] Li H Q, Gao R, Li W H, et al. 2018. The Moho structure beneath the Yarlung Zangbo Suture and its implications: Evidence from large dynamite shots[J]. Tectonophysics, 747: 390-401. [33] Li H Q, Gao R, Li W H, et al. 2021. The Mabja dome structure in southern Tibet revealed by deep seismic reflection data and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 126(4): 1-25. [34] Li Q S, Gao R, Wang H Y, et al. 2009. 200-kg large explosive detonation facing 50-km thick crust beneath west Qinling, northeastern Tibetan plateau[J]. Earthquake Science, 22(4): 389-393. doi: 10.1007/s11589-009-0389-3 [35] 李秋生, 高原, 王绪本, 等. 2020. 青藏高原地球物理与大陆动力学研究的新进展[J]. 地球物理学报, 63(3): 789-801 doi: 10.6038/cjg2020O0063Li Q S, Gao Y, Wang X B, et al. 2020. New research progress in geophysics and continental dynamics of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 63(3): 789-801 (in Chinese). doi: 10.6038/cjg2020O0063 [36] 李文辉, 高锐, 王海燕, 等. 2012. 深地震反射剖面构造信息识别研究[J]. 地球物理学报, 55(12): 4138-4146 doi: 10.6038/j.issn.0001-5733.2012.12.026Li W H, Gao R, Wang H Y, et al. 2012. Research on structure information recognition of deep seismic reflection profiles [J]. Chinese Journal of Geophysics, 55(12): 4138-4146 (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.12.026 [37] Li W H, Keller G R, Gao R, et al. 2013. Crustal structure of the northern margin of the North China craton and adjacent region from SinoProbe02 North China seismic WAR/R experiment[J]. Tectonophysics, 606: 116-126. doi: 10.1016/j.tecto.2013.04.007 [38] 李文辉, 王海燕, 高锐, 等. 2021. 秦岭造山带及邻区上地壳精细速度结构研究[J]. 地学前缘, 28: 1-12Li W H, Wang H Y, Gao R, et al. 2021. Research on upper crust velocity structure of the Qinling orogen and adjacent regions [J]. Earth Science Frontiers, 28: 1-12 (in Chinese). [39] 李英康, 高建伟, 韩健, 等. 2019. 扬子块体两侧造山带地壳推覆的地球物理证据及其地质意义[J]. 中国科学: 地球科学, 49(4): 687-705Li Y K, Gao J W, Han J, et al. 2019. Geophysical evidence for thrusting of crustal materials from orogenic belts over both sides of the Yangtze Block and its geological significance [J]. Science China Earth Sciences, 49(4): 687-705 (in Chinese). [40] 李忠雄, 叶天生, 马龙, 等. 2017. 羌塘盆地托纳木—笙根地区高密度高覆盖宽线采集试验[J]. 地球物理学进展, 32(2): 672-683 doi: 10.6038/pg20170230Li Z X, Ye T S, Ma L, et al. 2017. Acquisition technique test of high density and high fold wide line profiling seismic survey in Qiangtang basin [J]. Progress in Geophysics, 32 (2): 672-683 (in Chinese). doi: 10.6038/pg20170230 [41] 刘保金, 沈军, 张先康, 等. 2007. 深地震反射剖面揭示的天山北缘乌鲁木齐坳陷地壳结构和构造[J]. 地球物理学报, 50(5): 1464-1472 doi: 10.3321/j.issn:0001-5733.2007.05.022Liu B J, Shen J, Zhang X K, et al. 2007. The crust structures and tectonics of rumqi depression revealed by deep seismic reflection profile in the northern margin of Tianshan mountains [J]. Chinese Journal of Geophysics, 50(5): 1464-1472 (in Chinese). doi: 10.3321/j.issn:0001-5733.2007.05.022 [42] Liu Y J, Li W M, Ma Y F, et al. 2021. An orocline in the eastern central Asian orogenic belt[J]. Earth-Science Reviews, 2021, 221(1): 103808. [43] Liu Z, Tian X B, Gao R, et al. 2017. New images of the crustal structure beneath eastern Tibet from a high-density seismic array [J]. Earth and Planetary Science Letters, 480: 33-41. doi: 10.1016/j.jpgl.2017.09.048 [44] 卢占武, 高锐, 李秋生, 等. 2009. 横过青藏高原羌塘地体中央隆起区的深反射地震试验剖面[J]. 地球物理学报, 52(8): 2008-2014 doi: 10.3969/j.issn.0001-5733.2009.08.008Lu Z W, Gao R, Li Q S, et al. 2009. Testing deep seismic reflection profiles across the central uplift of the Qiangtang terrane in the Tibetan Plateau [J]. Chinese Journal of Geophysics, 52 (8): 2008-2014 (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.08.008 [45] 卢占武, 高锐, 匡朝阳, 等. 2010. 庐枞金属矿集区深地震反射剖面探测研究: 一种经济的、变化的采集观测系统实验[J]. 岩石学报, 26(9): 2553-2560Lu Z W, Gao R, Kuang C Y, et al. 2010. Research on deep seismic reflection profile in Luzong ore concentration area: An economical and changeable gathering test [J]. Acta Petrologica Sinica, 26 (9): 2553-2560 (in Chinese). [46] 卢占武, 高锐, 李洪强, 等. 2016. 深反射地震数据揭示的拉萨地体北部到羌塘地体南部地壳厚度的变化[J]. 中国地质, 43(5): 1679-1687Lu Z W, Gao R, Li H Q, et al. 2016. Crustal thickness variation from Northerm Lhasa terrane to Southern Qiangtang terrane revealed by deep seismic reflection data [J]. Geology in China, 43 (5): 1679-1687 (in Chinese). [47] 吕庆田, 侯增谦, 赵金花, 等. 2003. 深地震反射剖面揭示的铜陵矿集区复杂地壳结构形态[J]. 中国科学: 地球科学, 33(5): 442-449Lü Q T, Hou Z Q, Zhao J H, et al. 2003. Complex crustal structure in Tongling ore concentration area revealed by deep seismic reflection profile [J]. Science China Earth Sciences, 33(5): 442-449 (in Chinese). [48] Malinowski M. 2016. Deep reflection seismic imaging in SE Poland using extended correlation method applied to PolandSPAN data[J]. Tectonophysics, 689(15): 107-114. [49] Matthews D H. 1990. Progress in BIRPS deep seismic reflection profiling around the British Isles[J]. Tectonophysics, 173(5876): 387-396. [50] Oliver J. 1993. COCORP probes continental depths[J]. Geotimes, 6: 21-22. [51] 秦晶晶, 刘保金, 许汉刚, 等. 2020. 地震折射和反射方法研究郯庐断裂带宿迁段的浅部构造特征[J]. 地球物理学报, 63(2): 505-516 doi: 10.6038/cjg2020N0144Qin J J, Liu B J, Xu H G, et al. 2020. Exploration of shallow structural characteristics in the Suqian segment of the TanLu fault zone based on seismic refraction and reflection method [J]. Chinese Journal of Geophysics, 63 (2): 505-516 (in Chinese). doi: 10.6038/cjg2020N0144 [52] Reddy P R, Rao V V. 2013. Seismic images of the continental Moho of the Indian shield[J]. Tectonophysics. 609(8): 217-233. [53] 任彦宗. 2021. 扬子板块西缘峨眉山大火成岩省地壳结构研究——基于深地震反射剖面的认识[D]. 北京: 中国地质科学院.Ren Y Z. 2021. Study on crustal structure of Emeishan large igneous province on the western margin of Yangtze plate-Based on the understanding of deep seismic reflection profiling [D]. Beijing: Chinese Academy of Geological Sciences (in Chinese). [54] Roux P, Moreau L, Lecointre A, et al. 2016. A methodological approach towards high-resolution surface wave imaging of the San Jacinto fault zone using ambient-noise recordings at a spatially dense array[J]. Geophysical Journal International, 206(2): 980–992. doi: 10.1093/gji/ggw193 [55] Siddique A E , Ramon C, Puy A, et al. 2014. Crustal deformation styles along the reprocessed deep seismic reflection transect of the Central Iberian zone (Iberian Peninsula)[J]. Tectonophysics. 621: 159-174. doi: 10.1016/j.tecto.2014.02.014 [56] 孙思宇, 胡光辉, 何兵红, 等. 2021. 反射波波形反演技术及其陆地资料应用[J]. 地球物理学进展: 36: 1-9Sun S Y, Hu G H, He H B, et al. 2021. Reflection waveform inversion and its application to onshore seismic data [J]. Progress in Geophysics, 36: 1-9 (in Chinese). [57] 陶天生, 李春峰, 李珂迪, 等. 2020. 东海深部地层时深转换关系的分段优化拟合[J]. 海洋学研究, 38(3): 65-75 doi: 10.3969/j.issn.1001-909X.2020.03.007Tao T S, Li C F, Li K D, et al. 2020. Segmented fitting in time-depth conversion relationship of deep strata in the East China Sea[J]. Journal of Marine Sciences, 38 (3): 65-75 (in Chinese). doi: 10.3969/j.issn.1001-909X.2020.03.007 [58] 滕吉文. 2021. 高精度地球物理学是创新未来的必然发展轨迹[J]. 地球物理学报, 64(4): 1131-1144 doi: 10.6038/cjg2021N0100Teng J W. 2021. High-precision geophysics: the inevitable development track of the innovation future[J]. Chinese Journal of Geophysics, 64 (4): 1131-1144 (in Chinese). doi: 10.6038/cjg2021N0100 [59] Thiel S, Goleby B R, Pawley M J, et al. 2020. AusLAMP 3D MT imaging of an intracontinental deformation zone, Musgrave Province, central Australia[J]. Earth, Planets and Space, 72(1): 1-21. [60] Tian X B, Bai Z M, Klemperer S L, et al. 2021. Crustal-scale wedge tectonics at the narrow boundary between the Tibetan Plateau and ordos block[J]. Earth and Planetary Science Letters, 554: 116700. doi: 10.1016/j.jpgl.2020.116700 [61] Wang G C, Tian X B. 2018. High-resolution crustal velocity imaging using ambient noise recordings from a high-density seismic array: An example from the Shangrao section of the Xinjiang basin, China[J]. Earthquake Science, 31(5): 242-251. [62] 王海波, 张伟, 张宏, 等. 2019. 高精度可控震源在深反射地震采集中的应用[J]. 地球物理学进展, 34(5): 1910-1916 doi: 10.6038/pg2019DD0314Wang H B, Zhang W, Zhang H, et al. 2019. Deep seismic reflection acquisition with high-precision vibroseis [J]. Progress in Geophysics, 34 (5): 1910-1916 (in Chinese). doi: 10.6038/pg2019DD0314 [63] 王海燕, 高锐, 卢占武, 等. 2010. 深地震反射剖面揭露大陆岩石圈精细结构[J]. 地质学报, 84(6): 818-839Wang H Y, Gao R, Lu Z W, et al. 2010. Fine structure of the continental lithosphere circle revealed by deep seismic reflection profile[J]. Acta Geologica Sinica, 84 (6): 818-839 (in Chinese). [64] 王海燕, 高锐, 卢占武, 等. 2017. 四川盆地深部地壳结构——深地震反射剖面探测[J]. 地球物理学报, 60(8): 2913-2923 doi: 10.6038/cjg20170801Wang H Y, Gao R, Lu Z W, et al. 2017. Deep crustal structure in Sichuan Basin: Deep seismic reflection profiling[J]. Chinese Journal of Geophysics, 60 (8): 2913-2923 (in Chinese). doi: 10.6038/cjg20170801 [65] 汪俊, 徐子英, 任卫波. 2020. 复杂沉积区地震剖面时深转换的多公式拟合方案及应用[J]. 物探与化探, 44(1): 149-155Wang J, Xu Z Y, Ren W B. 2020. The time-to-depth conversion based on multi-functions fitting solution and its application to complicated sedimentary area [J]. Geophysical and Geochemical Exploration, 44 (1): 149-155 (in Chinese). [66] 王建民, 杨宝俊, 李占林, 等. 2020. 松辽盆地东缘域地壳结构及其地质意义: 深反射地震[J]. 地球物理学报, 63(9): 3478-3490 doi: 10.6038/cjg2020M0131Wang J M, Yang B J, Li Z L, et al. 2020. Crustal structure between the eastern margin of Songliao basin and its geological implication: Deep seismic reflection [J]. Chinese Journal of Geophysics, 63 (9): 3478-3490 (in Chinese). doi: 10.6038/cjg2020M0131 [67] 谢樊, 王海燕, 侯贺晟, 等. 2021. 中亚造山带东段浅表构造速度结构——深地震反射剖面初至波层析成像的揭露[J]. 吉林大学学报(地球科学版), 51(2): 584-596Xie F, Wang H Y, Hou H S, et al. 2021. Near-surface fine velocity structure in eastern segment of Central Asian orogenic belt: Reflection by first-arrival wave tomography from deep seismic reflection profile[J]. Journal of Jilin University (Earth Science Edition), 51 (2): 584-596 (in Chinese). [68] 杨瑨. 2020. 深地震反射剖面时深转换技术及在松辽盆地深部结构研究中的应用[D]. 北京: 中国地质大学(北京).Yang J. 2020. Deep-seismic reflection profile time-depth conversion technology and its application in deep structure research of Songliao basin[D]. Beijing: China University of Geosciences (Beijing) (in Chinese). [69] 张辉, 刘志伟, 贺日政, 等. 2020. 利用深反射地震数据构建的多阶面波频散曲线反演近地表横波速度结构——以跨班公湖—怒江缝合带深反射地震资料为例[J]. 地球物理学报, 63(12): 4410-4430 doi: 10.6038/cjg2020O0116Zhang H, Liu Z W, He R Z, et al. 2020. Near surface shear wave velocity structure inversion using multi-order surface wave dispersion curves constructed from deep seismic reflection data: a real case of deep seismic reflection profile across Bangong-Nujiang suture zone[J]. Chinese Journal of Geophysics, 63 (12): 4410-4430 (in Chinese). doi: 10.6038/cjg2020O0116 [70] Zhang S, Gao R, Li H, et al. 2014. Crustal structures revealed from a deep seismic reflection profile across the Solonker Suture Zone of the central Asian Orogenic Belt, Northern China: An integrated interpretation[J]. Tectonophysics, 612–613(4): 26–39. [71] 张兴洲, 曾振, 高锐, 等. 2015. 佳木斯地块与松嫩地块俯冲碰撞的深反射地震剖面证据[J]. 地球物理学报, 58(12): 4415-4424 doi: 10.6038/cjg20151207Zhang X Z, Zeng Z, Gao R, et al. 2015. The evidence from the deep seismic reflection profile on the subduction and collision of the Jiamusi and Songnen Msaaifs in the northeastern China [J]. Chinese Journal of Geophysics, 58 (12): 4415-4424 (in Chinese). doi: 10.6038/cjg20151207 [72] 赵盼盼, Michel Campillo, 陈九辉, 等. 2020. 地震环境噪声成像中的地形影响校正[J]. 地球物理学报, 63(10): 3764-3774 doi: 10.6038/cjg2020N0126Zhao P P, Michel C, Chen J H, et al. 2020. Topographic correction in ambient noise tomography [J]. Chinese Journal of Geophysics, 63 (10): 3764-3774 (in Chinese). doi: 10.6038/cjg2020N0126 -