• ISSN 2097-1893
  • CN 10-1855/P
尹智,张克非,段亚博,刘军生,穆庆禄. 2024. 地球科学和深空探测的引力场建模理论研究进展. 地球与行星物理论评(中英文),55(5):501-512. DOI: 10.19975/j.dqyxx.2024-002
引用本文: 尹智,张克非,段亚博,刘军生,穆庆禄. 2024. 地球科学和深空探测的引力场建模理论研究进展. 地球与行星物理论评(中英文),55(5):501-512. DOI: 10.19975/j.dqyxx.2024-002
Yin Z, Zhang K F, Duan Y B, Liu J S, Mu Q L. 2024. Theoretical research progress of gravitational field modeling in Earth science and deep-space exploration. Reviews of Geophysics and Planetary Physics, 55(5): 501-512 (in Chinese). DOI: 10.19975/j.dqyxx.2024-002
Citation: Yin Z, Zhang K F, Duan Y B, Liu J S, Mu Q L. 2024. Theoretical research progress of gravitational field modeling in Earth science and deep-space exploration. Reviews of Geophysics and Planetary Physics, 55(5): 501-512 (in Chinese). DOI: 10.19975/j.dqyxx.2024-002

地球科学和深空探测的引力场建模理论研究进展

Theoretical research progress of gravitational field modeling in Earth science and deep-space exploration

  • 摘要: 不规则天体引力场建模是当前地球科学和深空探测研究领域面对的共同难题. 本文梳理了这两个领域中引力场建模理论的发展历程以及近10年研究进展,重点介绍引力场多极展开理论和引力场势流模拟理论. 引力场多极展开理论将电磁学和量子力学中常用的复变函数公式体系引入引力场研究领域,比实变函数公式体系更简洁地表述天体(内外部)引力场结构;通过充分利用复变函数运算规则,能直观有效解决与引力场相关的天体动力学问题. 引力场势流模拟理论利用天体外部引力矢量和势流速度矢量的等价性(即两者都是无源无旋矢量场),将计算流体动力学数值计算方法引入引力场建模领域,通过求解势流速度场实现天体外部引力场建模;此理论不依赖于扰动理论,能有效克服常规方法在反演不规则天体引力场过程中存在的“解发散”问题. 这两种引力场建模理论的共同创新性在于通过将其它领域中看似不相关的数学理论引入到本领域,实现本领域的问题求解和理论推进,对后续理论研究起到一定借鉴意义. 此外,本文根据天体引力场的定义公式及其变体形式,对地球科学和深空探测领域已有的引力场建模理论研究进行分类、对比和分析,总结各自优缺点,对相关学者选用合适引力场建模方法提供有益参考.

     

    Abstract: Modeling the gravitational field of irregular celestial bodies is a common problem currently faced by the researchers in the fields of Earth science and deep space exploration. This paper reviews the developmental history of gravitational field modeling theory in these two fields. It summarizes research progress in the last decade, focusing on multipole expansion and potential-flow simulation theories. The gravitational field multipole expansion theory introduces the complex algebraic function commonly used in electromagnetism and quantum mechanics to the gravitational field modeling research field, which can express the (internal and external) gravitational field of celestial bodies more concisely. The calculation rules and mathematical tools from the complex function theory make solving the gravitational dynamics problems in Earth and planetary science more convenient. The potential-flow simulation theory is proposed on top of the equivalence of the Earth's external gravitational vector field and the potential-flow velocity field. That is, both are source- and curl-free vector fields. It introduces the numerical algorithms of computational fluid dynamics to model the external gravitational fields of celestial bodies. Because the potential-flow simulation theory is not established based on the perturbation theory, it can overcome the divergence problem of conventional methods, especially when inverting for the gravitational field of an irregularly shaped celestial body. The two theories expand the theoretical research of gravitational field modeling by using seemingly irrelevant knowledge from other research fields, and such methodology is instructive for Earth or deep-space science researchers to make subsequent theoretical improvements. Moreover, we also systematically categorize, compare, and analyze the existing gravitational field modeling methods based on the mathematical definition of the gravitational field, as well as its variants, and summarize their advantages and disadvantages, helping to select proper gravitational field modeling methods for the Earth and deep-space science researchers.

     

/

返回文章
返回