• ISSN 2096-8957
  • CN 10-1702/P


左洪 裴顺平 何建坤 孙权 薛晓添 刘雁冰 李佳蔚 李磊

引用本文: 左洪,裴顺平,何建坤,孙权,薛晓添,刘雁冰,李佳蔚,李磊. 2021. 冰川地震学研究进展. 地球与行星物理论评,52(3):280-290
Zuo H, Pei S P, He J K, Sun Q, Xue X T, Liu Y B, Li J W, Li L. 2021. Research progress of the glacier seismology. Reviews of Geophysics and Planetary Physics, 52(3): 280-290


doi: 10.16738/j.dqyxx.2021-002
基金项目: 国家自然科学基金资助项目(U2039203,41941016);中国科学院战略性先导科技专项资助项目(A类)(XDA20070302)

    左洪(1996-),女,硕士研究生,主要从事青藏高原冰川地震的研究. E-mail:zuohong@itpcas.ac.cn


    裴顺平(1974-),男,研究员,主要从事地球深部结构成像的研究. E-mail:peisp@itpcas.ac.cn

  • 中图分类号: P315

Research progress of the glacier seismology

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. U2039203, 41941016) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20070302)
  • 摘要: 冰川地震学结合了冰川学和地震学的综合优势,形成一门年轻的交叉学科. 冰震是指冰川运动和破裂过程中产生的振动,包括从微小的嘎吱声到相当于7级地震的突发性破裂或滑动. 当前,根据冰震发生的位置以及发生机理的不同,将冰震大概分为五类:冰川表层破裂、冰川终端崩解、冰内水力压裂、冰腔水流震荡、冰层基底黏滑. 冰震研究除了可以采用传统地震学方法外,也可以结合GPS、数值模拟、冰川物性等多学科综合方法来研究,进一步可以探究冰崩的发生过程及危险性评估. 本文回顾了国内外冰川地震学的研究进展,介绍了我国研究人员在青藏高原地区开展的冰川地震研究工作,综合探讨了冰川地震对天然地震研究的启示.


  • 图  1  1950~2019年冰川地震学的论文数量增长情况(修改自Podolskiy and Walter, 2016

    Figure  1.  Cumulative number of papers on passive glacier seismology, 1950~2019 (modified from Podolskiy and Walter, 2016)

    图  2  典型冰震的位置和发生机理示意图(修改自Larose et al., 2015

    Figure  2.  Schematic diagram of the location and mechanism of typical icequakes (modified from Larose et al., 2015)

    图  3  (a)含P波的浅表冰裂隙冰震及瑞利波频谱;(b)深部冰震及更高频的P波频谱(修改自Roosli et al., 2014

    Figure  3.  (a) Surface crevasse icequake with P-arrival and dominant Rayleigh wave; (b) Deep icequake with dominant P-arrival, higher frequencies (modified from Roosli et al., 2014)

    图  4  格陵兰岛冰崩的波形特征。(a)冰震时间序列的水平南北分量(红色)和附近测量的海洋水位(青色),清楚显示了冰山崩解事件引发长达1小时的水位振荡;(b)冰崩事件的开始时的频谱(红色)和前期噪声谱(黑色)(修改自Walter et al., 2013

    Figure  4.  Seismic signature of a calving event at Kangerdlugssup Sermerssua (Greenland), recorded on the station NUUG of the Greenland Ice Sheet Monitoring Network. (a) Horizontal north-south component of seismic time series (red) and nearby measured ocean water level (cyan). Both time series clearly show the hour-long water level oscillation triggered by the iceberg calving event. (b) Spectrum of the calving event's onset (red) and prevent noise (black) (modified from Walter et al., 2013)

    图  5  冰腔水流震颤与水位有关(修改自Roeoesli et al., 2016

    Figure  5.  The tremor caused by subglacial water flow is related to rising water levels (modified from Roeoesli et al., 2016)

    图  6  冰层基底黏滑的相似波形(修改自Allstadt and Malone, 2014

    Figure  6.  The similar waveforms of stick-slip motion (modified from Allstadt and Malone, 2014)

    图  7  观测气温、气温梯度与高频冰震的时间分布(陈宇乔,2018

    Figure  7.  The temporal distribution of air temperature, air temperature gradient and number of detected short-period icequakes ( Chen, 2018)

    图  8  阿汝冰川的冰震观测台站分布(五角星为震中)

    Figure  8.  Distribution of icequake observation stations in Aru glacier (star is epicenter)

    图  9  主频为20 Hz的典型冰震波形(震中标注于图8

    Figure  9.  Typical icequake waveforms with a dominant frequency of 20 Hz (The epicenter is marked in Fig.8)

  • [1] Allstadt K, Malone S D. 2014. Swarms of repeating stick-slip icequakes triggered by snow loading at Mount Rainier volcano[J]. Journal of Geophysical Research-Earth Surface, 119(5): 1180-1203. doi: 10.1002/2014JF003086
    [2] Amundson J M, Truffer M, Lüthi M P, et al. 2008. Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland[J]. Geophysical Research Letters, 35(22):L 22501. doi: 10.1029/2008GL035281
    [3] Anandakrishnan S, Blankenship D D, Alley R B, et al.1998.Influence of subglacial geology on the position of a West Antarctic ice stream from seismic observations[J]. Nature, 394(6688): 62-65.
    [4] Anderson R S, Anderson S P, Macgregor K R, et al. 2004.Strong feedbacks between hydrology and sliding of a small alpine glacier[J]. Journal of Geophysical Research-Earth Surface, 109(F3):F03005.
    [5] Canassy P D, Walter F, Husen S, et al. 2013. Investigating the dynamics of an Alpine glacier using probabilistic icequake locations: Triftgletscher, Switzerland[J]. Journal of Geophysical Research-Earth Surface, 118(4): 2003-2018. doi: 10.1002/jgrf.20097
    [6] Carmichael J D.2019. Narrowband signals recorded near a moulin that are not moulin tremor: a cautionary short note[J]. Annals of Glaciology, 60(79): 231-237.
    [7] Carmichael J D, Joughin I, Behn M D, et al. 2015. Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins[J]. Journal of Geophysical Research-Earth Surface, 120(6): 1082-1106. doi: 10.1002/2014JF003398
    [8] 常利军, 丁志峰, 孙为国. 2012. 第27次南极科学考察度夏期间长城站地震观测[J]. 极地研究, 24(01): 98-103.

    Chang L J, Ding Z F, Sun W G.2012. Seismological observation at the Great Wall station during the 27th Chinese antarctic expedition in the summer[J]. Chinese Journal of Polar Research, 24(1): 98-103 (in Chinese).
    [9] Chen X, Shearer P M, Walter F, et al. 2011. Seventeen Antarctic seismic events detected by global surface waves and a possible link to calving events from satellite images[J]. Journal of Geophysical Research-Solid Earth, 116:B06311.
    [10] 陈宇乔. 2018. 大陆型山谷冰川冰震的规律和影响因素——以老虎沟12号冰川为例[J]. 海洋学研究, 36(3): 50-56.

    Chen Y Q. 2018. Rule and affecting factors of seismic events in valley glacier with continental features: A case study on Laohugou Glacier No. 12[J]. Journal of Marine Sciences, 36(03): 50-56 (in Chinese).
    [11] Cohen D, Hooyer T S, Iverson N R, et al. 2006. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions[J]. Journal of Geophysical Research-Earth Surface, 111(F3):F03006.
    [12] Colgan W, Rajaram H, Abdalati W, et al. 2016. Glacier crevasses: Observations, models, and mass balance implications[J]. Reviews of Geophysics, 54(1): 119-161. doi: 10.1002/2015RG000504
    [13] Danesi S, Bannister S, Morelli A. 2007. Repeating earthquakes from rupture of an asperity under an Antarctic outlet glacier[J]. Earth and Planetary Science Letters, 253(1): 151-158.
    [14] Deichmann N, Ansorge J, Scherbaum F, et al. 2000. Evidence for deep icequakes in an Alpine glacier[J]. Annals of Glaciology, 31: 85-90. doi: 10.3189/172756400781820462
    [15] Dmitrieva K, Hotovec-Ellis A J, Prejean S, et al. 2013. Frictional-faulting model for harmonic tremor before Redoubt Volcano eruptions[J]. Nature Geoscience, 6(8): 652-656. doi: 10.1038/ngeo1879
    [16] Ekstrom G, Nettles M, Abers G A. 2003. Glacial earthquakes. Science, 302(5645): 622-624. doi: 10.1126/science.1088057
    [17] Faillettaz J, Pralong A, Funk M, et al. 2008. Evidence of log-periodic oscillations and increasing icequake activity during the breaking-off of large ice masses[J]. Journal of Glaciology, 54(187): 725-737. doi: 10.3189/002214308786570845
    [18] Farra V, Wittlinger G. 2013. Observation of low shear-wave velocity at the base of the polar ice sheets: evidence for enhanced anisotropy[OL]. EGU2013-5296.https://ui.adsabs.harvard.edu/abs/2013EGUGA..15.5296F.
    [19] Goldberg D N, Schoof C, Sergienko O V. 2014. Stick-slip motion of an Antarctic Ice Stream: The effects of viscoelasticity[J]. Journal of Geophysical Research-Earth Surface, 119(7): 1564-1580. doi: 10.1002/2014JF003132
    [20] Harland S R, Kendall J M, Stuart G W, et al.2013. Deformation in Rutford Ice Stream, West Antarctica: measuring shear-wave anisotropy from icequakes[J]. Annals of Glaciology, 54(64): 105-114.
    [21] Heeszel D S, Walter F, Kilb D L.2014. Humming glaciers[J]. Geology, 42(12): 1099-1102.
    [22] Helmstetter A, Moreau L, Nicolas B, et al. 2015. Intermediate-depth icequakes and harmonic tremor in an Alpine glacier (Glacier d'Argentière, France): Evidence for hydraulic fracturing?[J]. Journal of Geophysical Research-Earth Surface,120(3).
    [23] 胡文涛, 姚檀栋, 余武生, 等. 2018. 高亚洲地区冰崩灾害的研究进展[J]. 冰川冻土, 40(6): 1141-1152.

    Hu W T, Yao C D, Yu W S, et al. 2018.Advances in the study of glacier avalanches in High Asia[J]. Journal of Glaciology and Geocryology, 40(6): 1141-1152 (in Chinese).
    [24] Kaab A, Leinss S, Gilbert A, et al. 2018. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability[J]. Nature Geoscience, 11(2): 114-120. doi: 10.1038/s41561-017-0039-7
    [25] Kohler A, Nuth C, Schweitzer J, et al. 2015.Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen[J]. Svalbard. Polar Research, 34, 26178. doi: 10.3402/polar.v34.26178
    [26] Larose E, Carrière S, Voisin C, et al. 2015. Environmental seismology: What can we learn on earth surface processes with ambient noise?[J]. Journal of Applied Geophysics, 116: 62-74. doi: 10.1016/j.jappgeo.2015.02.001
    [27] Ma H C, Chu R S, Sheng M H, et al. 2020. Template matching for simple waveforms with low signal-to-noise ratio and its application to icequake detection[J]. Earthquake Science, 33: 1-8.
    [28] Macayeal D R, Banwell A F, Okal E A, et al. 2018. Diurnal seismicity cycle linked to subsurface melting on an ice shelf[J]. Annals of Glaciology, 60(79): 137-157.
    [29] Métaxian J-P. 2003. Seismicity related to the glacier of Cotopaxi Volcano, Ecuador[J]. Geophysical Research Letters, 30(9):1483. doi: 10.1029/2002GL016773
    [30] Mikesell T D, Van Wijk K, Haney M M, et al. 2012. Monitoring glacier surface seismicity in time and space using Rayleigh waves[J]. Journal of Geophysical Research-Earth Surface, 117(F2):F02020.
    [31] Neave K G, Savage J C. 1970.Icequakes on the Athabasca Glacier[J]. Journal of Geophysical Research, 75(8): 1351-1362. doi: 10.1029/JB075i008p01351
    [32] Nettles M, Ekström G. 2010. Glacial Earthquakes in Greenland and Antarctica[J]. Annual Review of Earth and Planetary Sciences, 38(1): 467-491. doi: 10.1146/annurev-earth-040809-152414
    [33] Peng Z, Walter J I, Aster R C, et al. 2014. Antarctic icequakes triggered by the 2010 Maule earthquake in Chile[J]. Nature Geoscience, 7(9): 677-681. doi: 10.1038/ngeo2212
    [34] Perol T, Gharbi M, Denolle M.2018. Convolutional neural network for earthquake detection and location[J]. Science Advances,4(2): e1700578. doi: 10.1126/sciadv.1700578
    [35] Podolskiy E A, Walter F. 2016. Cryoseismology[J]. Reviews of Geophysics, 54(4): 708-758. doi: 10.1002/2016RG000526
    [36] Powell T W, Neuberg J. 2003. Time dependent features in tremor spectra[J]. Journal of Volcanology and Geothermal Research, 128(1-3): 177-185. doi: 10.1016/S0377-0273(03)00253-1
    [37] Pratt M J, Winberry J P, Wiens D A, et al. 2014. Seismic and geodetic evidence for grounding-line control of Whillans Ice Stream stick-slip events[J]. Journal of Geophysical Research-Earth Surface, 119(2): 333-348. doi: 10.1002/2013JF002842
    [38] Ritz C, Edwards T L, Durand G, et al. 2015. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations[J]. Nature, 528(7580): 115-118.
    [39] Roeoesli C, Walter F, Ampuero J P, et al. 2016.Seismic moulin tremor[J]. Journal of Geophysical Research-Solid Earth, 121(8): 5838-5858. doi: 10.1002/2015JB012786
    [40] Roosli C, Walter F, Husen S, et al. 2014. Sustained seismic tremors and icequakes detected in the ablation zone of the Greenland ice sheet. Journal of Glaciology, 60(221): 563-575. doi: 10.3189/2014JoG13J210
    [41] Seth S, Dominic L, Michael W, et al. 2003. An Introduction to Seismology, Earthquakes, and Earth Structure[M]. Blackwell Publishing.
    [42] Smith E C, Smith A M, White R S, et al. 2015. Mapping the ice-bed interface characteristics of Rutford Ice Stream, West Antarctica, using microseismicity[J]. Journal of Geophysical Research-Earth Surface, 120(9): 1881-1894. doi: 10.1002/2015JF003587
    [43] Tsai V C, Rice J R, Fahnestock M.2008. Possible mechanisms for glacial earthquakes[J]. Journal of Geophysical Research-Earth Surface, 113(F3):F03014.
    [44] Tsai V C, Stewart A L, Thompson A F. 2015. Marine ice-sheet profiles and stability under Coulomb basal conditions[J]. Journal of Glaciology, 61(226): 205-215. doi: 10.3189/2015JoG14J221
    [45] Van Der Veen C J. 1998. Fracture mechanics approach to penetration of surface crevasses on glaciers[J]. Cold Regions Science and Technology, 27(1): 31-47.
    [46] Walter F, Deichmann N, Funk M. 2008. Basal icequakes during changing subglacial water pressures beneath Gornergletscher, Switzerland[J]. Journal of Glaciology, 54(186): 511-521. doi: 10.3189/002214308785837110
    [47] Walter F, Olivieri M, Clinton J F. 2013. Calving event detection by observation of seiche effects on the Greenland fjords[J]. Journal of Glaciology, 59(213): 162-178. doi: 10.3189/2013JoG12J118
    [48] Walter F, Chaput J, Lüthi M P. 2014. Thick sediments beneath Greenland’s ablation zone and their potential role in future ice sheet dynamics[J]. Geology, 42(6): 487-490. doi: 10.1130/G35492.1
    [49] Walter F, Clinton J F, Deichmann N, et al. 2009. Moment Tensor Inversions of Icequakes on Gornergletscher, Switzerland[J]. Bulletin of the Seismological Society of America, 99(2A): 852-870. doi: 10.1785/0120080110
    [50] Walter F, Roux P, Roeoesli C, et al. 2015. Using glacier seismicity for phase velocity measurements and Green\"s function retrieval[J]. Geophysical Journal International, 201(3): 1722-1737. doi: 10.1093/gji/ggv069
    [51] Walter J I, Brodsky E E, Tulaczyk S, et al. 2011. Transient slip events from near-field seismic and geodetic data on a glacier fault, Whillans Ice Plain, West Antarctica[J]. Journal of Geophysical Research-Earth Surface, 116:F01021.
    [52] Wapenaar K.2004. Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation[J]. Physical Review Letters, 93: 254301.
    [53] Winberry J P, Anandakrishnan S, Wiens D A, et al. 2013. Nucleation and seismic tremor associated with the glacial earthquakes of Whillans Ice Stream, Antarctica[J]. Geophysical Research Letters, 40(2): 312-315. doi: 10.1002/grl.50130
    [54] Winberry J P, Anandakrishnan S, Alley R B, et al. 2009. Basal mechanics of ice streams: Insights from the stick-slip motion of Whillans Ice Stream, West Antarctica[J]. Journal of Geophysical Research-Earth Surface, 114:F01016.
    [55] Wittlinger G, Farra V. 2015. Evidence of unfrozen liquids and seismic anisotropy at the base of the polar ice sheets[J]. Polar Science,9(1): 66-79.
    [56] 晏鹏. 2018. 基于被动源地震学方法的南极冰盖结构研究[D]. 武汉: 武汉大学.

    Yan P. 2018. Antarctic ice sheet structure inferred from passive seismic methods[D]. Wuhan: Wuhan Univeisity (in Chinese).
    [57] 杨康, 刘巧. 2016. 冰川表面水文过程研究进展[J]. 冰川冻土, 38(6): 1666-1678.

    Yang K, Liu Q. 2016. Supraglacial drainage system: a review[J]. Journal of Glaciology and Geocryology, 38(6): 1666-1678 (in Chinese).
    [58] 杨旭, 李永华, 盖增喜. 2021.机器学习在地震学中的应用进展. 地球与行星物理论评, 52(1): 76-88. doi: 10.16738/j.dqyxx.2020-006

    Yang X, Li Y H, Ge Z X. 2021. Machine learning and its application in seismology. Reviews of Geophysics and Planetary Physics, 52(1):76-88. doi: 10.16738/j.dqyxx.2020-006
    [59] Zoet L K, Alley R B, Anandakrishnan S, et al. 2013. Accelerated subglacial erosion in response to stick-slip motion[J]. Geology, 41(2): 159-162. doi: 10.1130/G33624.1
  • 加载中
  • 文章访问数:  326
  • HTML全文浏览量:  155
  • PDF下载量:  41
  • 被引次数: 0
  • 收稿日期:  2021-01-16
  • 录用日期:  2021-03-03
  • 刊出日期:  2021-04-14